УДК 621.315 ФАЗОВЫЕ ДИАГРАММЫ СИСТЕМ *AgTl*₃*I*₅ – *I* (*TlI*, *AgTl*₂*I*₃) Л.Ф.Машадиева, М.Б.Бабанлы, У.А.Кулиева

Бакинский государственный университет AZ 1148, Баку, ул.3.Халилова, 23; e-mail: <u>leylafm@rambler.ru</u>

Методами ДТА и РФА изучены фазовые равновесия в системе Ag-Tl-I по квазибинарным разрезам $AgTl_3I_5$ –TlI, $AgTl_3I_5$ – $AgTl_2I_3$ и $AgTl_3I_5$ –I. Установлено, что первые два разреза образуют фазовые диаграммы эвтектического типа, а последний - характеризуется монотектическим и эвтектическим расновесиями. Указанные разрезы, а также ранее изученные квазибинарные сечения Ag-TlI, Ag-AgTl_2I_3 и AgI-TlI триангулируют систему Ag-Tl-I на шесть самостоятельных подсистем.

Ключевые слова: система Ag-Tl-I, фазовое равновесие, квазибинарный разрез

Многие иодиды на основе серебра высокой проводимостью обладают по Ag^+ . Некоторые катиону ИЗ этих суперионных проводников применяются в качестве ионселективных электродов, твердых электролитов в твердотельных источниках электрической энергии. сенсорах, дисплеях и т.д. [1-4].

Система Ag-Tl-I исследована только по квазибинарному разрезу AgI -TlI [1, 5-7]. По данным [5], в этой системе образуются два тройных соединения - $AgTl_2I_3$ и $AgTlI_2$, плавящиеся конгрузнтно при 600K разложением И с по реакции перитектической при 513К соответственно. В системе кристаллизуются лве эвтектики, имеющие координаты 70 мол% TII; 590 К и 27 мол% TII; 475 К. Несколько отличный вариант Тх диаграммы системы AgI – Tll построен авторами [6] с учетом данных работы [7]. На этой диаграмме, помимо вышеуказанных тройных соединений, нашли отражение также две новые промежуточные фазы, устойчивые в интервалах температур: 588-598К (л-фаза) и 478-633К (η-фаза). Кроме того, по данным [6], соединение AgTII₂ образуется по перитектоидной реакции при 498 К (по [7] при 500K), температура конгруэнтного а плавления AgTl₂I₃ равна 604 К. Данные работ [5-7] значительно отличаются также по координатам эвтектических точек.

В [8] нами методами ДТА и РФА

изучены фазовые равновесия в системе Agнекоторым политермическим Tl-I ПО разрезам. Уточнена Т-х диаграмма квазибинарной системы AgI-TII. Показано, что в образуются тройные ней соединения AgTl₂I₃ и AgTlI₂, плавящиеся при 603К конгруэнтно и при 510К инконгруэнтно по перитектической реакции соответственно. Установлено, что практически квазибинарными являются также разрезы Ag-TII и Ag-AgTl₂I₃, образующие фазовые диаграммы монотектического типа с вырожденной эвтектикой вблизи легкоплавкого компонента.

В данной работе представлены результаты исследования фазовых равновесий в системах $AgTl_3I_5$ –TlI, $AgTl_3I_5$ – $AgTl_2I_3$ и $AgTl_3I_5$ –I.

Диаграмма состояния граничной бинарной системы Ag-I не построена. Известно, что AgI плавится конгрузнтно при 828К и претерпевает полиморфные превращения при 408 и 420К [1,9].Система Ag-Tl имеет фазовую диаграмму эвтектического типа [9].Таллий образует три иодида – TII, Tl₃I₄ и TII₃. Первый плавится конгруэнтно при 715К и претерпевает полиморфное превращение при 452К, а два последующих инконгруэнтно по перитекреакции при 533 и 403К. тической Подсистема TI-TII характеризуется наличием широкой области расслаивания и эвтектики[9,10]. вырожденной

ЭКСПЕРИМЕНТЫ И ИХ РЕЗУЛЬТАТЫ

Для проведения экспериментов сначала прямым взаимодействием элементарных компонентов высокой степени чистоты (дважды рафинированное таллий _ ТЛ-000, серебро, трижды сублимированный йод) в вакуумированных $(\sim 10^{-2}\Pi a)$ кварцевых ампулах были синтезированы бинарные соединения AgI, ТІІ и ТІ₃І₄. Ампулы из прозрачного кварца длиной ~20 см и внутренним диаметром 1.6-1.8см, содержащие 20-30г реакционной смеси, нагревали в наклонной трубчатой печи до температуры несколько выше плавления синтезируемых точки Часть (~8 соединений. ампул см) находилась вне печи и охлаждалась водой для контроля давления пара йода и предотвращения взрыва ампулы. Лля ускорения взаимодействия ампулу вращали вокруг продольной оси и подвергали вибрации. После взаимодействия основной массы йода ампулы полностью вводили в печь и выдерживали при 850 К (AgI) и 750 К (TII) в течение 1 часа, а затем медленно охлаждали. По причине перитектического характера образования соединение Tl₃I₄ после синтеза подвергалось отжигу при 550 К в течение 120 ч.

Затем бинарных сплавлением соединений AgI, TII и Tl_3I_4 в различных соотношениях в вакуумированных кварцевых ампулах при 650 К синтезировали тройные соединения AgTl₃I₅ и AgTl₂I₃. Все синтезированные соединения были идентифицированы методами ДТА и РФА. Температуры бинарных соединений и AgTl₂I₃ совпадают литературными с данными [1,10,11].

Впервые определены температура и характер плавления соединения AgTl₃I₅. Установлено, что оно плавится конгруэнтно при 570К.

Порошковые дифрактограммы AgTl₃I₅ и AgTl₂I₃ индицированы с помощью компьютерной программы EVA (Bruker). Полученные параметры ИХ кристаллических решеток практически совпадают с данными работ [11,12]. Установлено, что соединение AgTl₂I₃ кристаллизуется В тригональной структуре (Пр.гр.**R**-3) с параметрами решетки: a=10,462;*c*=20,016Å; AgTl₃I₅ имеет гексаа гональную структуру (Пр.гр. $6_{2}c)$ с параметрами, *a*=10,48; *c*=13,41Å, z=4.

Сплавы исследуемых систем готовили сплавлением соответствующих исходных веществ в условиях вакуума. Учитывая высокое давление паров элементарного йода, сплавы системы AgTl₃I₅–I синтезировали в толстостенных (4мм) ампулах из прозрачного кварцевого стекла с внутренним диаметром 6 мм, которые выдерживают давление порядка 10 атм.

Для приведения сплавов в состояние, близкое к равновесному, их отжигали при 500К, а сплавы системы AgTl₃I₅ –I при 400К в течение 500 ч.

Исследования проводили методами ДТА (пирометр HTP-74, хромельалюмелевые термопары) и РФА (порошковый дифрактометр D8 ADVANCE фирмы Bruker).

Анализ совокупности экспериментальных данных подтвердил квазибинарность всех изученных систем и позволил построить их T-х диаграммы.

AgTl₃I₅-4,5TlI Система имеет диаграмму фазовую эвтектического типа(рис.1,а) Эвтектика имеет координаты ~90 мол% $AgTl_3I_5$ и 565К. Температура полиморфного перехода ТІІ (451К) не меняется с изменением состава. что указывает на незначительность твердых растворов на основе этого соединения в системе AgTi₃I₅ –4,5TlI. <u>Система AgTl₃I₅ –</u> 1,5AgTl₂I₃ также характеризуется эвтектическим равновесием, которое достигается при 562 К и 85 мол% AgTl₃I₅(рис.1,б).

Рис.1. Фазовые диаграммы систем $AgTl_3I_5 - TII$ (a) и $AgTl_3I_5 - AgTl_2I_3$ (б)

<u>Разрез AgTl₃I₅–91</u> имеет фазовую диаграмму монотектического типа (рис.2). При температуре монотектического равновесия (565К) область расслаивания охватывает область составов, по меньшей мере, от ~15 до 95 мол% $AgTl_3I_5$. Эвтектика имеет координаты 375К и ~10 мол% $AgTl_3I_5$.

Рис.2. Фазовая диаграмма квазибинарной системы AgTl₃I₅ - I

Результаты РФА подтвердили фазовые диаграммы изученных систем. На рис.3 представлены порошковые рентгенограммы сплавов системы $AgTl_3I_5$ – TII. Как видно, оба промежуточных сплава имеют дифракционные картины, состоящие из

совокупностей линий отражения исходных соединений. С изменением состава интенсивности линий отражения меняются в соответствии с диаграммой состояния. Для двух других систем получены аналогичные дифракционные картины.

Рис.3. Порошковые дифрактограммы сплавов системы AgTl₃I₅ - 4,5Tll: **1**- AgTl₃I₅; **2** - 80 мол% AgTl₃I₅; **3** - 40 мол% AgTl₃I₅; **4**-Tll.

Результаты настоящего исследования данные работы [8] позволяют И конгруэнтно триангулировать систему Адна следующие самостоятельные Tl-I подсистемы: Ag-AgI-AgTl₂I₃, Ag-AgTl₂I₃-Ag-Tl-TlI, AgI-AgTl₂I₃-AgTl₃I₅-I, TII. AgTl₂I₃-AgTl₃I₅-TlI и AgTl₃I₅-TlI-I (рис.4).

Из рис.4 видно, что в области составов $AgI-AgTl_2I_3-AgTl_3I_5-I_2$ система конгруэнтно не триангулируется. Это связано с тем, что равновесие

 $AgI + AgTl_3I_5 \leftrightarrow AgTlI_2 + I_2$ смещено вправо и соединение $AgTlI_2$ плавится инконгруэнтно [11].

Рис.4. Схема конгруэнтной триангуляции системы Ag – Tl – I; пунктиры – стабильные ниже солидуса разрезы

На рис. 4 пунктирами показаны неквазибинарные сечения, стабильные ниже солидуса.

Таким образом, в целом, квазибинарные и стабильные в субсолидусе разрезы разделяют концентрационный треугольник Ag–Tl–I на 11 элементарных треугольников, отвечающих различным трехфазным состояниям системы.

Авторы выражают благодарность коллективу лаборатории №4 Института физики Национальной АН Азербайджана за помощь в проведении рентгенофазового анализа.

ЛИТЕРАТУРА

- 1. Иванов-Щиц А.К., Мурин И.В. Ионика твердого тела.т.1. изд.С.-Петерб.ун-та: 2000. 616 с
- Solid electrolytes. Ed. P.Hagenmüller, W.Van Goll. Acad. Press. New York, San Fransisko, London: 1978. 543 p.
- Burbanoa J.C., Vargasa R.A., Pena-Laara D., Lozano C.A. and Correac H. Defect Interaction and Solid Electrolyte Transition in AgI-based Materials // Solid St.Ionics. 2009. v.180. issue 36-39. pp.1553-1557.
- Klimensza B., Gorecki T. and etc. Phase Transitions in Ag-based Solid Electrolytes as detected by Thermosonimetry. // Thermochim. Acta. 2001. v. 374. issue 2. pp.145-149.
- 5. Берг Л.Г., Лепешков И.Н. Сингулярная взаимная система AgNO₃+TII↔ AgI+TINO₃. //Изв. сектора физ.-хим. Анализа ИОНХ АН СССР. 1947. т.15. С.148.
- Brightwell J.W., Miller L.S., Munday A. and Ray B. The silver Iodide-Thallium Iodide Pseudobinary System. // Phys. Stat.Sol.(a). 1983. v.79. pp.293-300.

- Bradley J.N. and Green P.D. Solids with High Ionic Conductivity in Group I: Halide Systems. // Trans.Faraday Soc., 1967. v.63. pp.424-430.
- Машадиева Л.Ф., Бабанлы М.Б. Квазибинарные разрезы фазовой диаграммы системы Ag-Tl-I. //Научные труды АзТУ. Фундаментальные науки. 2011. т. X (37). №1. С.102-105.
- Binary Alloy Phase Diagrams, Ed. T.B. Massalski, second edition. ASM International. Materials park. Ohio. 1990. 3876 p.
- Cubicciotti D. The Thallium-Iodine Phase Diagram. // Journal of the Less-Common Metals. 1971. v.24. pp.201-209.
- 11. Hoyer M., Hartl H. Die Kristallstrukturen von Tl_2AgI_3 und $NaAgI_2\cdot 3H_2O$. // Z. Anorg.und Allg.Chemie. 1996. Bd.622. S.308-312.
- Stoeger W., Rabenau A. Tl₆Ag₂I₁₀ ein Polyiodid mit Ag₂-Paaren. Darstellung, Eigenschaften und Kristallstruktur. //Z.Naturfourshung, Teil B. Anorg.Chem., Organ.Chem // 1978. v.33. pp.740-744.

AgTl₃I₅ – I (TII, AgTl₂I₃) SİSTEMLƏRİNİN FAZA DİAQRAMLARI

L.F.Məşədiyeva, M.B.Babanlı, U.A.Quliyeva

Ag-Tl-I sistemində faza tarazlıqları AgTl₃I₅ –TlI, AgTl₃I₅ – AgTl₂I₃ və AgTl₃I₅ –I kvazibinar kəsikləri üzrə DTA və RFA üsulları ilə tədqiq edilmişdir. Müəyyən edilmişdir ki, ilk iki kəsik evtektik tipli faza diaqramına malikdir, sonuncu isə monotektik və evtektik tipli tarazlıqlarla xarakterizə edilir. Göstərilən kəsiklər, həmçinin, əvvəllər tədqiq edilmiş Ag-TlI, Ag-AgTl₂I₃ və AgI-TlI kvazibinar kəsikləri Ag-Tl-I sistemini 6 müstəqil alt sistemə trianqulyasiya edir.

Açar sözlər: Ag-Tl-I sistemi, faza tarazlığı, kvazibinar kəsikləri

PHASE DIAQRAMS OF AgTl₃I₅ – I (TII, AgTl₂I₃) SYSTEMS

L.F.Mashadiyeva, M.B.Babanly, U.A.Kuliyeva

Phase equilibria in the Ag-Tl-I system on $AgTl_3I_5 - TlI$, $AgTl_3I_5 - AgTl_2I_3$ and $AgTl_3I_5 - I$ quasibinary sections have been analyzed using differential-thermal and X-ray methods. It revealed that first two sections form eutectic type phase diagram, while the latter is characterized by monotectic and eutectic equilibriums. Above-pointed sections, as well as earlier studied quasibinary sections Ag-TlI, Ag-AgTl_2I_3 and AgI-TlI triangulate Ag-Tl-I into six independent subsystems.

Keywords: Ag-Tl-I system, phase equilibrium, quasibinary section

Поступило в редакцию 18.03.2011.