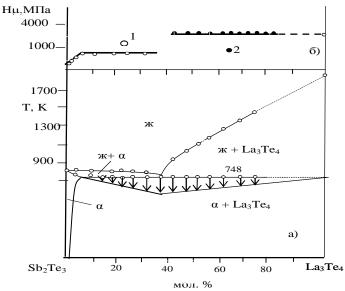
УДК 548.3:549.331

ХАРАКТЕР ФАЗООБРАЗОВАНИЯ В СИСТЕМЕ Sb₂Te₃ – La₃Te₄

Ф.М.Садыгов, З.И.Исмаилов, С.Г.Мамедова, Е.К.Джафарова

Бакинский государственный университет AZ 1148 Баку, ул. 3.Халилова, 23; e-mail: <u>zakir-51@mail.ru</u>


Изучение взаимодействия в системе $Sb_2Te_3 - La_3Te_4$ показало, что ее диаграмма состояния относится к простому эвтектическому типу с ограниченной растворимостью на основе Sb_2Te_3 ; область гомогенности при комнатной температуре доходит до 3 мол.% La_3Te_4 . Исследованы температурные зависимости термоэлектрических параметров твердых растворов $(Sb_2Te_3)_{1-x}(La_3Te_4)_x$ ($x\leq 0.03$).

Ключевые слова: сплавы, микротвердость, термоэлектрические параметры, электропроводность.

Халькогениды стибиума и лантана относятся к различным классам полупроводников, в которых электронная структура компонентов сильно различается. Получение на их основе новых материалов является актуальной задачей и требует фундаментальных поисков в указанной

области. Для этого мы исследовали взаимодействие в системе $Sb_2Te_3 - La_3Te_4$.

Соединение Sb_2Te_3 кристаллизуется в ромбической сингонии типа тетрадимита (Bi_2Te_2S) с параметрами элементарной ячейки a=4.38 A° ; c=30.4 A° ; обладает термоэлектрическими свойствами [1 – 3].

Рис. 1. Диаграмма состояния системы $Sb_2Te_3 - La_3Te_4$ (а) и изменение значений микротвердости в зависимости от состава сплавов (б) (1 – светлая фаза; 2 – темная фаза).

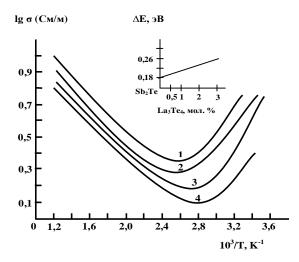
Соединение La_3Te_4 имеет кубическую сингонию типа Th_3P_4 с a=9.621 A° , также характеризуется высокими значениями термоэлектрических параметров [4–6].

При синтезе сплавов системы $Sb_2Te_3-La_3Te_4$ использовали исходные материалы: La- металлический La-0, Sb-B3, Te-A2. Сплавы синтезировали из элементов

ампульным методом в однотемпературной вертикальной печи при ~1473К. Для получения равновесного состояния сплавы подвергали дополнительному гомогенизирующему отжигу в вакуумированных кварцевых ампулах при 673К в течение 350 ч.

Дифференциально-термический анализ (ДТА) проводили на приборе HTP-73 с

Pt/PtRh-термопары. Микропомощью структурный анализ (МСА) проводили с микроскопа помощью МИМ-7 отшлифованных и полированных поверхсплавов. Травителем ностях служил раствор состава 10 мл конц. $H_2SO_4 + 5\Gamma$ $K_2Cr_2O_7 + 90$ мл H_2O , время травления составляло 20-25 с. Микротвердость сплавов измеряли на приборе ПМТ-3. Электрофизические свойства исследовали компенсационным методом [6].


На основании данных, полученных ДТА, МСА и измерением микротвердости сплавов, построена диаграмма состояния разреза Sb_2Te_3 — La_3Te_4 (рис. 1); разрез квазибинарный, относится к эвтектическому типу, с образованием ограниченных твердых растворов на основе сесквителлурида сурьмы. Часть диаграммы, богатая La_3Te_4 , — тугоплавкая и поэтому проведена пунктиром. Эвтектике отвечает состав 63 мол.% Sb_2Te_3 + 37 мол.% La_3Te_4 ; температура плавления эвтектики — 748 К.

Растворимость на основе Sb_2Te_3 при комнатной температуре достигает 3мол.% La_3Te_4 . Для определения границы области гомогенности на основе сесквителлурида сурмы синтезировали дополнительные сплавы через 1 мол.%, которые в дальнейшем отжигали при 423, 523, 623К в течение 350 ч и затем закаливали в ледяной воде. Согласно данным MCA, граница

растворимости на основе Sb_2Te_3 при 748К доходит до 8 мол. % La_3Te_4 , с понижением температуры она сужается до 3 мол. % La_3Te_4 .

При исследовании микротвердости сплавов получены два ряда значений: светлой фазе соответствует микротвердость сплавов на основе Sb_2Te_3 . В области твердых растворов H вначале увеличивается от 930 до 1030 МПа, и это значение в дальнейшем остается постоянным. Микротвердость темной фазы (La_3Te_4) — 3800 МПа (рис. 1).

Исследованы температурные зависимости коэффициентов электропроводности и термо-э.д.с $(Sb_2Te_3)_{1-x}(La_3Te_4)_x$ $(x \le 0.03)$ (рис. 2). Кривые температурной зависимости электропроводности можно разделить на две области. Низкотемпературную (от 290 до 350К) и высокотемпературную (выше 350-400). В первой области удельная носит металлический проводимость характер, а во второй - полупроводниковый. Такой ход кривых зависимости $\sigma \sim f(T)$ присущ и исходному Sb_2Te_3 [7-9.] Из высокотемпературной области электропроводности рассчитаны значения термической ширины запрещенной зоны, которые в виде графической зависимости от состава твердых растворов на основе Sb_2Te_3 приведены на рис. 2.

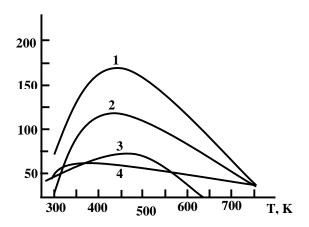


Рис. 2. Температурные зависимости электропроводности и изменение ширины запрещенной зоны сплавов твердых растворов на основе Sb_2Te_3 (1–0.5; 2 – 1.0; 3 – 2.0; 4 – 3.0 мол.% La_3Te_4).

При добавлении La_3Te_4 ΔE незначительно возрастает от 0.18 эВ для Sb_2Te_3 до 0.26 эВ для образцов с содержанием 3 мол. % La_3Te_4 . На рис.3 представлены кривые

температурных зависимостей коэффициента термо-э.д.с. сплавов твердых растворов $(Sb_2Te_3)1-x(La_3Te_4)x$.

α, мкВ/К

Рис.3. Температурные зависимости коэффициента термо-э.д.с.сплавов твердых растворов на основе Sb_2Te_3 (1–0.5; 2 – 1.0; 3 – 2.0; 4 – 3.0 мол. % La_3Te_4)

Понижение α с увеличением в сплаве La₃Te₄ смещается в сторону низких температур. По знаку термо-э.д.с. что все сплавы твердых установлено, растворов как при комнатной температуре, температурном исследуемом обладают р-типом проводиинтервале подробное обсуждение мости. Более результатов изучения электрофизических параметров можно провести с помощью исследования других кинетических коэффицентов, но близость составов и родственный характер температурных зависимостей кривых термоэлектрических параметров свидетельствуют об аналогичности механизма явлений переноса в настоящих веществах с ранее изученными твердыми растворами на основе Sb_2Te_3 в системе $Sb_2Te_3 - La_3Te_4$ [10-12].

ЛИТЕРАТУРА

- 1. Дреббл Дж., Гудмен К. Химическая связь в теллуриде сурмы. В кн.: Полупроводниковые вещества. Вопросы химической связи. Под ред. Жузе В.П. Москва. Изд. иностр. лит. 1960. С. 268.
- 2. Debies P., Robolais J. X-ray photoelectron Spectra and electric structure of Sb₂Te₃ (X = O, S, Se, Te). // Chem. Phys., 1977. v. 20. N2. p. 277.
- 3. Абрикосов Н.Х., Банкина В.Ф. Исследование диаграммы состояния системы Sb-Te. // Ж. неорган. Химии. 1958. т. 3. №3. С. 659.

- 4. Ярембаш Е.И., Елисеев А.А. Халькогениды редкоземельных элементов. М.: Наука. 1975. С. 260.
- 5. Bro P. The preparation of single crystals of some Rare Earth tellurides.

 // J.Electrochem. Soc., 1962. v. 109.
 №11. p. 1110.
- 6. Лашкарев Г.В., Падерно Ю.Б. К вопросу о физических свойствах и химической связи в халькогенидах редкоземельных металлов. // Изв. АН СССР. Неорган. Материалы. 1965. т. 1. №10. С. 1791.
- 7. Патент Азербайджана № İ 2010 0209. Низкотемпературный термо-

- электрический материал на основе Bi₂Se₃. БИ. 2012. №4.
- 8. Sadıqov F.M., Qənbərova G.T,. İsmayılov Z.İ. HoSbTe₃ və HoBiTe₃ birləşmələrinin elektro-fiziki xassələri. // AzTU. Elmi əsərlər. Fundam. Elmlər. 2012. №3. C.139-142.
- 9. Гольцман Б.М., Кудинов В.А., Смирнов И.А. Полупроводниковые термоэлектрические материалы на основе Sb₂Te₃. М.: Наука. 1972. С. 320.
- Toberer E. S., May A. F. and Snyder G.
 J. "Zintl Chemistry for Designing

- High Efficiency Thermoelectric Materials" // Chemistry of Materials. 2010. 22. P. 624.
- 11. Рустамов П.Г., Садыгов Ф.М., Алиджанов М.А. и др. Исследование электрофизических свойств твердых растворов (Sb_2Te_3)_{1-х}(La_3Te_4)_х (x≤0,03). // Изв. АН СССР. Неорган. Материалы. 1979. т. 15. №5. С. 2230.
- 12. G. Jeffrey Snyder and Eric S. Toberer."Complex Thermoelectric Materials". // Nature Materials. 2008. 7. p.105-114.

Sb₂Te₃-La₃Te₄ SİSTEMİNDƏ FAZAƏMƏLƏGƏLMƏNİN XARAKTERİ

F.M.Sadıxov, Z.İ.İsmayılova, S.Q.Məmmədova, Y.K.Cəfərova,

 Sb_2Te_3 - La_3Te_4 sistemində qarşılıqlı təsir öyrənilmiş və onun faza diaqramı qurulmuşdur. Müəyyən edilmişdir ki, Sb_2Te_3 - La_3Te_4 hal diaqramı Sb_2Te_3 əsasında məhdud həllolma ilə sadə evtektik tipə aiddir; otag temperaturunda homogenləşmə sahəsi 3 mol % La_3Te_4 –də çatır. (Sb_2Te_3) 1-x (La_3Te_4) x ($x \le 0.03$) bərk məhlulların termoelektrk parametrləri tədqiq olunub. **Acar cözlər:** xalkogenidlər, xəlitə, mikrobərklik, termoelektrik xassələr, elektrik keçiriciliyi

NATURE OF PHASE-FORMATION IN Sb₂Te₃ – La₃Te₄ SYSTEM

F.M.Sadigov, Z.I.Ismailova, S.G.Mamedova, Y.K.Jafarova

Research into the interaction in Sb_2Te_3 - La_3Te_4 system showed that the diagram of the Sb_2Te_3 - La_3Te_4 system condition refers to a simple eutectic type with limited solubility based on Sb_2Te_3 ; homogeneity region at room temperature reaches to 3 mol. % La_3Te_4 . Temperature dependences of thermo-electric parameters of solid solutions (Sb_2Te_3) 1-x (La_3Te_4) x ($x \le 0.03$) have been examined.

Keywords: chalcogenides, alloys, microhardness, thermoelectrical properties, electrical conductivity.

Поступила в редакцию 24.12.1012.