УДК 536:546.81'87'24

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА СОЕДИНЕНИЙ РbBi₆Te₁₀ и PbBi₄Te₇

Ф.Н.Гусейнов

Бакинский государственный университет AZ 1148, Баку, ул.3.Халилова, 23 E-mail: <u>Babanly_mb@rambler.ru</u>

Измерением ЭДС обратимых концентрационных цепей типа (–) PbTe(m8) |жидкий электролит, Pb²⁺/ (Pb-Bi-Te) (m8) (+) в интервале температур 300-430К и методом PФA исследована система PbTe-Bi₂Te₃ в области составов 0-35 мол%PbTe. Показано, что в этом температурном интервале растворимость PbTe в Bi₂Te₃ не превышает 2 мол%. Подтверждены тройные соединения PbBi₆Te₁₀ и PbBi₄Te₇, относящиеся к гомологическому ряду nPbTe mBi₂Te₃. Из уравнений температурных зависимостей ЭДС вычислены парциальные термодинамические функции ($\overline{\Delta G}, \overline{\Delta H}, \overline{\Delta S}$) PbTe в сплавах. На основании диаграммы твердофазовых равновесий системы PbBi₄Te₇-Bi₂Te₃-Te из этих парциальных молярных величин с использованием соответствующих данных для PbTe и Bi₂Te₃ рассчитаны стандартные термодинамические функции образования и стандартные энтропии тройных соединений PbBi₆Te₁₀ и PbBi₄Te₇.

Тройные слоистые тетрадимитоподобные фазы, образующиеся в системах $A^{IV}-B^V-X$ (A^{IV} -Ge, Sn, Pb; B^V -Sb, Bi; X-Se, Te), перспективны для использования в качестве термоэлектрических материалов [1-3]. Эти соединения характеризуются сложными многослойными структурами и низкими значениями решеточной составляющей теплопроводности, что важно для термоэлектрических материалов [3]. В частности, авторы [4,5] показали, что тройные соединение PbBi₄Te₇ и PbBi₂Te₄, а также твердые растворы на их основе обладают высокими термоэлектрическими показателями.

Фазовые равновесия в квазибинарной системе PbTe-Bi₂Te₃, характеризующейся образованием тройных тетрадимитоподобных промежуточных фаз, исследованы в ряде работ [6-12]. По данным [6], в системе существует одно соединение - PbBi₄Te₇ с инконгруэнтным плавлением при 850К. Согласно же [7] это соединение плавится конгруэнтно при 858К. Авторы [8] обнаружили в данной системе тройное соединение Pb₃Bi₄Te₉, распадающееся эвтектоидно при 668К на твердые растворы на основе PbTe и Bi₂Te₃. По данным [9] соединения PbBi₄Te₇ и PbBi₂Te₄ плавятся с разложением по перитектическим реакциям при 843 и 856К

соответственно. В работе же [10] показано, что $PbBi_2Te_4$ плавится конгруэнтно при 864К.

Кристаллическая структура тройных соединений системы РbTe-Bi₂Te₃ исследована в ряде работ [4,7,11]. Показано, что в основе всех структур лежит плотнейшая кубическая упаковка слоев теллура, в октаэдрических пустотах которой находятся атомы Рb и Bi, и что структуры всех соединений в этой системе родственны кристаллической структуре Bi₂Te₃, относящейся к структурному типу тетрадимита (рис. 1). На основании данных рентгенографического исследования монокристаллических сколов показано [12], что в системе РbTe-Bi₂Te₃ помимо PbBi₄Te₇ и PbBi₂Te₄ существуют, по крайней мере, еще три слоистых соединения, принадлежащих к гомологическому ряду nPbTe·mBi₂Te₃: Pb₂Bi₆Te₁₁ (n=2, m=3), PbBi₆Te₁₀ (n=1, m=3) и PbBi₈Te₁₃ (n=1, m=4), кристаллическая структура которых не была уточнена. По мнению авторов [12] подобные расхождения в результатах работ [6-11] обусловлены трудностью достижения равновесия в массивных образцах.

Анализ литературных данных показывает, что термодинамические свойства тройных фаз системы PbTe-Bi₂Te₃ до сих пор не изучены. В настоящей работе система PbTe- мол%PbTe методом электродвижущих сил Bi₂Te₃ изучена в области составов 0-35 (ЭДС).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения РbTe и Bi_2Te_3 плавятся конгруэнтно при 1197 и 858К соответственно и легко кристаллизуются из расплавов стехиометрического состава [13]. Поэтому их синтез проводили сплавлением элементарных компонентов высокой степени чистоты в вакуумированных (~10⁻²Па) кварцевых ампулах при температурах на 30-50⁰ выше точки плавления с последующим медленным охлаждением.

Сплавы системы РbTe-Bi₂Te₃-Te с составами 2, 5, 20, 24, 27, 30, 32, 35 мол% PbTe готовили методом сплавления в условиях вакуума из предварительно синтезированных и идентифицированных исходных соединений с добавлением 2 ат% избыточного теллура. С целью достижения состояния, максимально близкого к равнолитые негомогенизированные весному. сплавы массой 1г были перетерты в порошок, тщательно перемешены и запрессованы в таблетки, а затем отожжены при 800 К в течение 1000ч. Составы сплавов и температуры отжига выбирали исходя из данных [12].

РФА проводили методом порошка на дифрактометре ДРОН-2 с CuK_{α} излучением. Для проведения экспериментов методом ЭДС были составлены концентрационные цепи типа

так как составленные нами концентрационные цепи относительно свинцового электрода оказались необратимыми.

Электролитом служил глицериновый раствор KCl с добавлением PbCl₂. Учитывая недопустимость присутствия влаги и кислорода в электролите, глицерин (марки ЧДА) тщательно обезвоживали и обезгаживали откачкой при температуре ~400 К, использовали безводные, химически чистые KCl и PbCl₂.

Методики сборки электрохимической ячейки и измерений ЭДС подробно описав [14]. Измерения ЭДС проводили в ны ячейке с инертной атмосферой компенсационным методом с помощью цифрового вольтметра В7-34А в интервале 300-430К. В этом интервале температур исследуемые сплавы находятся в твердом состоянии и составы равновесных фаз практически не зависят от температуры [12]. Первые равновесные значения ЭДС были получены после выдерживания электрохимической ячейки при ~380 К в течение 40-60 ч, последующие – через каждые 3-4 часа после установления определенной постоянной температуры.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рисунке представлен график концентрационной зависимости ЭДС цепей типа (1) при 300К, который находится в соответствии с фазовой диаграммой PbTe-Bi₂Te₃ [12]: ЭДС имеет три серии постоянных значений (199, 142, 111 мВ), скачкообразно переходящих друг в друга при стехиометрических составах тройных соединений PbBi₆Te₁₀ и PbBi₄Te₇. Это подтверждает данные [12] о существовании вышеуказанных тройных соединений и отсутствии заметных областей гомогенности на их основе.

Результаты измерений ЭДС цепей типа (1) и РФА отожженных сплавов с вышеуказанными составами позволили установить характер твердофазовых равновесий в системе Pb-Bi-Te в области составов PbBi₄Te₇-Bi₂Te₃-Te. Показано, что тройные соединения PbBi₆Te₁₀ и PbBi₄Te₇ находятся в коннодной связи с элементарным теллуром. Растворимость избытка теллура в этих фазах незначительна.

Зависимость ЭДС (мВ) концентрационных цепей типа (1) от состава в системе PbTe-Bi₂Te₃ при 300К.

Для проведения термодинамических расчетов результаты измерений ЭДС были обработаны в приближении их линейной темпе ратурной зависимости методом наименьших квадратов [15] и представлены (табл. 1) в виде уравнений типа [16]:

$$E = a + bT \pm t \left[\frac{S_{E}^{2}}{n} + \frac{S_{E}^{2} \left(T - \overline{T} \right)^{2}}{\sum \left(T_{i} - \overline{T} \right)^{2}} \right]^{1/2}$$
(2)

где S_E^2 – дисперсии отдельных измерений ЭДС при температурах T_i ; $\overline{T} = \sum T_i / n$; n – число пар значений Е и Т; t – критерий Стюдента. При доверительном интервале 95% и n≥20 критерий Стюдента t≤2 [15].

Из данных табл. 1 по известным термодинамическим соотношениям [14] рассчитали парциальные молярные термодинамические функции PbTe ($\Delta \overline{Z}_{PbTe}$) в сплавах при 298 К (табл.2). Эти функции представляют собой разность парциальных молярных величин свинца в сплавах системы PbTe-Bi₂Te₃-Te ($\Delta \overline{Z}_{Pb}$) и в PbTe ($\Delta \overline{Z}'_{Pb}$). С другой стороны, PbTe является единственным соединением системы Pb-Te и поэтому $\Delta \overline{Z}_{PbTe} = \Delta_f Z^0$ (PbTe) [14]. Учитывая это, парциальные молярные функции свинца в сплавах PbTe-Bi₂Te₃-Te могут быть вычислены по соотношению

$$\Delta \overline{Z}_{Pb} = \Delta_f Z^0 (PbTe) + \Delta \overline{Z}_{PbTb}$$
(3)

где $\Delta_f Z^0 = \Delta_f G^0$ или $\Delta_f H^0$. Полученные значения $\Delta \overline{Z}_{Pb}$ представлены в таблице 3 и являются термодинамическими функциями следующих реакций потенциалобразования

$$Pb+3Bi_{2}Te_{3}+Te=PbBi_{6}Te_{10}$$
$$Pb+2PbBi_{6}Te_{10}+Te=3PbBi_{4}Te_{7}.$$

Фазовая область на рис.2	$E, MB = a + bT \pm 2S_E(T)$	
$PbBi_6Te_{10}+Bi_2Te_3+Te$	$154,5+0,148 \text{ T} \pm 2 \left[\frac{1,7}{24} + 5 \cdot 10^{-5} (\text{T} - 360,7)^2 \right]^{1/2}$	
PbBi ₄ Te ₇ +PbBi ₆ Te ₁₀ +Te	$126,7+0,051 \text{ T} \pm 2 \left[\frac{2,6}{24} + 8 \cdot 10^{-5} (\text{T} - 360,7)^2 \right]^{1/2}$	

Табл. 1.Температурные зависимости ЭДС концентрационных цепей типа (1) для сплавов системы PbTe-Bi₂Te₃-Te в интервале температур T=300-430K

Из этих уравнений следует, что стандартные термодинамические функции образования указанных соединений могут быть строго вычислены из данных табл. 3 с использованием соответствующих функций Bi₂Te₃. Например, для соединения PbBi₆Te₁₀

$$\Delta_{\rm f} Z^0 (\text{PbBi}_6 \text{Te}_{10}) = \Delta \overline{Z}_{\rm Pb} + 3\Delta_{\rm f} Z^0 (\text{Bi}_2 \text{Te}_3)$$
(4)

$$S^{0}(PbBi_{6}Te_{10}) = \overline{\Delta S}_{Pb} + S^{0}(Pb) + 3S^{0}(Bi_{2}Te_{3}) + S^{0}(Te)$$
(5)

Табл.2.Парциальные термодинамические функции PbTe в сплавах PbTe-Bi₂Te₃-Te при 298К

Фазовая область	$-\Delta \overline{G}_{PbTe}$	$-\Delta \overline{H}_{PbTe}$	$\Delta ar{S}_{PbTe}$
	кДж∙моль⁻¹		Дж·К ⁻¹ ·моль ⁻¹
$PbBi_6Te_{10} + Bi_2Te_3 + Te$	38.33±0,20	29.81±0,99	28.6±2,7
$PbBi_4Te_7 + PbBi_6Te_{10} + Te$	27.38±0,25	24.45±1,25	9,8±3,5

Табл. З.Парциальные термодинамические функции свинца в сплавах PbTe-Bi₂Te₃-Te при 298К

Фазовая область	$-\Delta \overline{G}_{Pb}$	$-\Delta \overline{H}_{Pb}$	$\Delta \overline{S}_{Pb}$
	кДж·моль ⁻¹		Дж·К ⁻¹ ·моль ⁻¹
$PbBi_6Te_{10}+Bi_2Te_3+Te$	105.63±2.20	98.41±2.29	24.2±4.5
$PbBi_4Te_7 + PbBi_6Te_{10} + Te$	94.68±2.25	93.05±2.55	5.5±5.0

Стандартные интегральные термодинамические функции соединения PbBi₄Te₇ вычислены аналогичным образом (табл. 4). Погрешности находили методом накопления ошибок.

Табл. 4. Стандартные интегральные термодинамические функции фаз в системе PbTe-Bi₂Te₃-Te

	$-\Delta_{\rm f} G^0(298{\rm K})$	$-\Delta_{\rm f} {\rm H}^0(298{\rm K})$	S ⁰ (298K)
Соединение	кДж∙моль⁻¹		Дж·К ⁻¹ ·моль ⁻¹
PbTe	67.3±2.0	68.6±1.3 [17,18]	110.0± 2.1 [17,18]
Bi ₂ Te ₃	77.3±1.7	78.2±0.8 [17,18]	261.1± 8.4 [17,18]
PbBi ₆ Te ₁₀	337.5±7.3	333.0±4.7	922±30
PbBi ₄ Te ₇	256.6±5.6	253.0±4.0	655±22

При расчетах наряду с данными табл. 2 использовали взаимосогласованные значения стандартных интегральных термодинамических функций PbTe и Bi₂Te₃ (табл. 4), которые можно считать вполне надежными. Значения энтальпии образования и стандартной энтропии этих соединений, рекомендованные в современных справочниках [17, 18], совпадают и хорошо согласуются с результатами, полученными методом ЭДС [19,20]. Стандартные свободные энергии Гиббса образования обоих соединений, вычислены нами из данных по их $\Delta_{\rm f} {\rm H}^0$ (298 K) и S⁰(298 K).

ЛИТЕРАТУРА

- Шевельков А.В. // Успехи химии. 2008. т.77. №1. С.3-21.
- 2. Kanatzidis M.G. The role of solid state chemistry in the discovery of new ther-

moelectric materials / Semiconductors and Semimetals. Ed. Terry M. Tritt. San Diego; San Francisco; N.Y.; Boston; London; Sydney; Tokyo: Academ. Press. 2001. v.69.P.51-98.

- 3. Шелимова Л.Е., Карпинский О.Г., Земсков В.С. // Перспективные материалы. 2000. №5. С. 23-32.
- 4. Oosawa Y., Taneto Y., Muraida M et.al. $PbBi_2Te_4$ and $PbBi_4Te_7$ thermoelectric materials in the system of Pb-Bi-Te / Proc. XVIII Int. Conf. on thermoelectrics. Baltimore: IEEE. 1999. P.550-553.
- 5. Шелимова Л.Е., Константинов П.П., Карпинский О.Г. и др. // Неорган. Материалы. 2004. т.40. №11. С.1307-1313.
- Елагина Е.И., Абрикосов Н.Х. // Журн. Неорган.химии. 1959. т.4. №7. С.1638-1642.
- 7. Голованова Н.С., Зломанов В.П., Тананаева О.И. // Изв.АН СССР, Неорган.матералы. 1983. т.19. №5. С.740-743.
- Hirai T, Takeda Y., Kurata K. // J. Less-Common Met., 1967. v.13. N3. P.352-356.
- Chami R., Brun G., Tedenac J.-C., Maurin M. // Rev. Chim. Miner., 1983. v.20. N3. P.305-313.
- Skoropanov A.S., Valevsky B.L., Skums V.F. et al. // Thermochim. Acta. 1985. v.90. Compl.P.331-334.
- 11. Петров И.И., Имамов Р.М. // Кристаллография. 1969. т.14. №4. С.699-703.
- 12. Карпинский О.Г., Шелимова Л.Е., Авилов Е.С. и др. // Неорган. Материалы.

2002. т.38. №1. С.24-32.

- Binary Alloys Phase Diagrams, Ed. T.B. Massalski, second edition. ASM International, Materials park, Ohio. 1990. 3589 p.
- 14. Бабанлы М.Б., Юсибов Ю.А., Абишев В.Т. Метод ЭДС в термодинамике сложных полупроводниковых веществ. Баку: изд. БГУ. 1992. 317 с.
- 15.Гордон А., Форд Р. Спутник химика. М.: Мир. 1976. 541с.
- 16. Корнилов А.Н., Степина Л.Б., Соколов В.А. // Журн. физ. Химии. 1972. т.46. №11. С. 2974-2979.
- Kubaschewski O., Alcock C.B., Spenser P.J. Materials Thermochemistry. 6-th edition, Pergamon Press, England. 1993. 363 p.
- 18. База данных термических констант веществ., Электронная версия под. ред. B.C. Юнгмана, 2006 г., <u>http://www.chem.msu.su/cgi-bin/tkv</u>
- Герасимов Я.И., Крестовников А.Н, Горбов С.И. Химическая термодинамика в цветной металлургии. Справочник, т.6, М.: Металлургия. 1974. 312с.
- 20. Мелех Б.Т., Семенкович С.А., Андреев А.А. Термодинамические свойства соединений непереходных элементов IV и V групп с серой, селеном и теллуром. / Термодинамические свойства интерметаллических фаз, Киев: изд.ИПМ. 1982. С.73-87.

PbBi₆Te₁₀ və PbBi₄Te₇ BİRLƏŞMƏLƏRİN TERMODİNAMİK XASSƏLƏRİ

F.N.Hüseynov

PbTe elektroduna nəzərən qatılılıq elementlərinin EHQ-nin ölçülməsi ilə PbTe- Bi_2Te_3 sistemi 0-35 mol%PbTe qatılıq intervalında öyrənilmiş, sistemdə Pb Bi_6Te_{10} və Pb Bi_4Te_7 birləşmələrinin əmələ gəlməsi təsdiq edilmişdir. EHQ ölçmələri əsasında bu birləşmələrin ilkin binar birləşmələrindən və elementar komponentlərdən stanlart əmələgəlmə Gibbs sərbəst enernjiləri və entalpiyaları, həmçinin standart entropiyaları hesablanmışdır.

THERMODYNAMIC PROPERTIES OF PbBi₆Te₁₀ AND PbBi₄Te₇ COMPOUNDS

F.N.Guseynov

The system $PbTe-Bi_2Te_3$ within 0-35 mol.% has been studied through measuring EMF reversible concentration chains of (-)PbTe(solid)/liquid electrolyte, $Pb^{2+}/(Pb-Bi-Te)/(solid)(+)$ at temperature interval 300-430 K and RFA method. It reveas that PbTe in Bi_2Te_3 solubility at this interval does not exceed 2 mol%. Reaffirmed are triple compounds of $PbBi_6Te_{10}$ and $PbBi_4Te_7$ pertaining to homological row $nPbTe\bullet mBi_2Te_3$. Standard thermodynamic functions of the formation and standard enthropy of triple compounds of $PbBi_6Te_{10}$ and $PbBi_4Te_7$ have been calculated to comply with a diagram of solid-phase equilibrium of $PbBi_4Te_7-Bi_2Te_3$ -Te system using appropriate data for PbTe and Bi_2Te_3 .