PHASE EQUILIBRIA IN THE Ag₂Se–Ag₈GeSe₆–Ag₈SiSe₆ SYSTEM AND CHARACTERIZATION OF THE Ag₈Si₁₋ₓGeₓSe₆ SOLID SOLUTIONS

G.M. Ashirov, K.N. Babanly, L.F. Mashadiyeva, Y.A. Yusibov, M.B. Babanly

Acad. M. Nagiyev Institute of Catalysis and Inorganic Chemistry, 113, H.Javid ave, AZ 1143, Baku, Azerbaijan
Ganja State University, 429, Heydar Aliyev ave., Ganja, Azerbaijan
e-mail: leylafm76@gmail.com

Received 07.06.2023
Accepted 10.08.2023

Abstract: Phase equilibria in the Ag₂Se–Ag₈SiSe₆–Ag₈GeSe₆ system were studied by differential thermal analysis and X-ray diffraction technique. Based on the experimental results and literature data, the projection of the liquidus surface of the Ag₂Se–Ag₈SiSe₆–Ag₈GeSe₆ system, the isothermal section at 300 K and some polythermal sections of the phase diagram were constructed. It was determined that continuous series of solid solution are formed based on high-temperature cubic modification and limited solid solution areas are formed based on low-temperature modification of initial compounds on the Ag₈SiSe₆–Ag₈GeSe₆ side of concentration triangle. The formation of solid solutions leads to a sharp decreasing of polymorphic transition temperatures of ternary compounds and stabilization of high-temperature phases at room temperature. The liquidus surface of the Ag₂Se–Ag₈SiSe₆–Ag₈GeSe₆ system consists of 2 areas reflecting the initial crystallization of α'-phase based on HT-Ag₂Se and HT-Ag₈Si₁₋ₓGeₓSe₆ solid solutions. The obtained new phases are of interest as environmentally safe materials with thermoelectric properties and mixed ion-electron conductivity.

Keywords: Argyrodite family compounds, silver-germanium selenide, silver-silicon selenide, phase equilibria, liquid surface, solid solutions, T-x diagram, crystal lattice parameters.

1. Introduction

Complex copper and silver chalcogenides with germanium subgroup elements are valuable functional materials [1-3]. Among these compounds, synthetic analogues of the mineral argyrodite with the formula A₈BX₆ (A-Cu, Ag; B⁴⁺-Si, Ge, Sn; X-S, Se, Te) are widely studied as environmentally safe materials with high thermoelectric figure of merit at medium temperatures [4-12]. Some of these compounds exhibit both photovoltaic and optical properties [13-17]. Most of the argyrodite family compounds have ionic conductivity due to the high mobility of Cu⁺ (Ag⁺) cations, which makes them very promising for use in preparing of photoelectrode materials, electrochemical solar energy converters, and ion-selective sensors [18-22].

It is known that the search and study of new multicomponent materials is based on information about the phase equilibria of the corresponding systems and the thermodynamic properties of the phases formed in them [23-29]. Most compounds of the argyrodite family have polymorphic transitions at low temperatures. As a rule, their high-temperature modifications are crystallized in a cubic structure, while their low-temperature phases have lower symmetry. Low-temperature modifications of some representatives of this class are also isostructural. This increases the possibility of the formation of solid solutions of different structures in the systems based on argyrodite analogues. In a series of works [30-37], phase equilibria in systems consisting of argyrodite phases were studied and new phases with variable composition were discovered in them.
The present study aimed to obtain a picture of phase equilibria in the the Ag$_2$Se–Ag$_8$GeSe$_6$–Ag$_8$SiSe$_6$ composition of the Ag$_2$Se–GeSe$_2$–SiSe$_2$ quaternary system.

The started compounds of the studied Ag$_2$Se–Ag$_8$GeSe$_6$–Ag$_8$SiSe$_6$ system have been sufficiently studied. The Ag$_2$Se compound melts congruently at 1173K and undergoes a polymorphic transition at 406K [38]. Ag$_8$SiSe$_6$ compound also melts congruently. Different authors give sharply different values of its melting point. Authors of [39, 40] define melting temperature at 1203 K. In [41] and [42] showed tempreture 1258 K and 1268 K, respectively. The polymorphic transition temperatures of this compound are 315, 354 K, respectively [43]. The low-temperature modification is tetragonal (Sp.gr. $I-4m2, a = 0.7706, b = 1.10141$ nm) [39, 40], the intermediate modification (IT) is simple cubic (Sp.gr. $P4_232, a = 1.087$ nm) [20] and high-temperature modification has a face-centered cubic structure (Sp.gr. $F-43m, a = 1.09413$ nm) [39, 40]. The compound Ag$_8$GeSe$_6$ melts congruently at 1176 K and has a polymorphic transformation at 321 K [40]. The low-temperature modification has an orthorhombic (Sp.gr. $Pmn2_1, a = 0.78235, b = 0.77126, c = 1.08854$ nm) [44] and the high-temperature modification has a cubic (Sp.gr. $F-43m, a = 1.09931$ nm) structure [9].

Ag$_2$Se–Ag$_8$GeSe$_6$ and Ag$_2$Se–Ag$_8$SiSe$_6$ sides of the Ag$_2$Se–Ag$_8$GeSe$_6$–Ag$_8$SiSe$_6$ solids triangle are quasi-binary and form a eutectic diagram. In the Ag$_2$Se–Ag$_8$GeSe$_6$ system, the eutectic crystallizes at 1103 K [40, 45, 46], and in the Ag$_2$Se–Ag$_8$SiSe$_6$ system at 1113 K [39], 1123 K [40], 1073 K [41]. Another boundary system Ag$_8$GeSe$_6$–Ag$_8$SiSe$_6$ has not been studied.

2. Experiment part

2.1. Synthesis

Ag$_2$Se, Ag$_8$SiSe$_6$ and Ag$_8$GeSe$_6$ compounds were first synthesized for conducting research. The synthesis was carried out by melting stoichiometric mixtures of the corresponding simple substances with high purity in quartz ampoules under vacuum conditions (10$^{-2}$Pa). Since the saturated vapor pressure of selenium (T$_{boil}=958$ K) at the melting temperature of all three compounds is high, their synthesis was carried out in a two-zone mode in an inclined furnace. The temperature of the furnace was gradually raised and heated to a temperature of 40-50 K above the melting point of the synthesized compound. A part of the ampoule outside the oven is constantly cooled. Due to the process of cooling with water for 2-3 hours, the selenium accumulated in the form of steam at the end of the ampoule was condensed and sent to the reaction zone, and after the absorption of most selenium, the ampoule was completely inserted into the furnace. After keeping in the oven for 4-5 hours, it was gradually cooled by disconnecting the oven from the power source.

The synthesized compounds were identified by differential thermal analysis (DTA) and X-ray diffraction analysis (XRD). Experimental DTA results for Ag$_2$Se and Ag$_8$GeSe$_6$ compounds showed that their temperatures of polymorph transition and melting correspond to the above literature data [38, 40]. Three endothermic effects were detected on the heating DTA curve of Ag$_8$SiSe$_6$ compound. Small peaks corresponding to 315 K and 355 K represent polymorphic transformations, and an intense peak at 1278 K reflects the melting point. These results agree with the data in [43]. X-ray phase analysis confirms the homogeneity of the synthesized samples and coincides with the diffraction patterns given in the literature for RT-modification of compounds [9, 20, 39, 30, 44].

Alloys of the Ag$_2$Se–Ag$_8$GeSe$_6$–Ag$_8$SiSe$_6$ system were prepared by melting the mixtures of the primary compounds in different proportions in vacuumed quartz ampoules. To bring the samples to equilibrium, they were thermally treated for a long time (500 h) at 900 K. Two samples were prepared for each composition in the Ag$_8$GeSe$_6$–Ag$_8$SiSe$_6$ system, one of which was gradually cooled in a furnace disconnected from the current source after thermal treatment, and the other was annealed by dropping the ampoule in cold water below 900 K.
2.2. Analysis

All the alloys were analyzed using powder XRD and DTA techniques. Powder XRD analysis was performed in a Bruker D2 PHASER diffractometer using CuKα1 radiation within the scanning range of 2θ=5÷75. DTA measurements were recorded with a “Netzsch 404 F1 Pegasus system” differential scanning calorimeter (under flowing argon atmosphere) and a multichannel device based on the electronic “TC-08 thermocouple data logger” (in sealed quartz tubes). The measurement results were processed using the NETZSCH Proteus Software. The temperature measurement accuracy was within ±2 К.

3. Results and discussion

Based on the obtained experimental results and literature data on the Ag2Se–Ag8GeSe6 and Ag2Se–Ag8SiSe6 systems [39-41, 45, 46], we obtained a detailed description of the phase equilibrium in the Ag2Se–Ag8GeSe6–Ag8SiSe6 system.

3.1. Border section of Ag8SiSe6–Ag8GeSe6

Based on DTA and XRD results, the phase diagram of Ag8SiSe6–Ag8GeSe6 system was constructed (Figure 1). As can be seen, in this system there is a continuous solid solution (δ-phase) between the high-temperature modifications of the initial compounds.

![Phase diagram of Ag8SiSe6–Ag8GeSe6 system and composition dependence of crystal lattice parameters of HT-Ag8Si1-xGexSe6 solid solutions.](image)

Fig. 1. Phase diagram of Ag8SiSe6–Ag8GeSe6 system and composition dependence of crystal lattice parameters of HT-Ag8Si1-xGexSe6 solid solutions.

Based on the low-temperature (β) and medium-temperature (γ) modifications of the Ag8SiSe6 compound, as well as the low-temperature modification (ε) of the Ag8GeSe6 compound, limited solid solution areas are formed. It can be seen from the phase diagram that the formation of solid solutions is accompanied by a decrease in the polymorphic transformation temperatures of the primary compounds.
This leads to the widening of the temperature range in which the high-temperature ion-conducting δ-phase exists and its stability at room temperature and below in the range of 15-70 mol% Ag$_8$GeSe$_6$.

Table 1. Crystal lattice parameters of HT-Ag$_8$Si$_{1-x}$Ge$_x$Se$_6$ solid solutions

<table>
<thead>
<tr>
<th>Composition, mol% Ag$_8$GeSe$_6$</th>
<th>Lattice parameters, 900 K; (Cubic, F-43m) a, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag$_8$SiSe$_6$</td>
<td>10.9405</td>
</tr>
<tr>
<td>10</td>
<td>10.9485</td>
</tr>
<tr>
<td>20</td>
<td>10.9528</td>
</tr>
<tr>
<td>40</td>
<td>10.9665</td>
</tr>
<tr>
<td>60</td>
<td>10.9772</td>
</tr>
<tr>
<td>80</td>
<td>10.9812</td>
</tr>
<tr>
<td>90</td>
<td>10.9884</td>
</tr>
<tr>
<td>Ag$_8$GeSe$_6$</td>
<td>10.9939</td>
</tr>
</tbody>
</table>

Fig. 2. X-ray diffraction patterns of Ag$_8$SiSe$_6$-Ag$_8$GeSe$_6$ system alloys (room temperature).
Fig. 2 shows the powder diffraction patterns of slowly cooled samples after thermal treatment. As can be seen, the diffraction patterns of the samples containing 90 and 80 mol% Ag₈GeSe₆ are qualitatively the same as pure RT-Ag₈GeSe₆, while the diffractograms of the samples belonging to the 20-70 mol% Ag₈GeSe₆ interval are similar to the cubic HT-modifications of the original compounds. Finally, the sample with 10 mol% Ag₈GeSe₆ has the same diffraction pattern as IT-Ag₈SiSe₆. These results confirm the phase diagram.

XRD results of samples quenched from 900 K are shown in Figure 3. It is clear that the diffractograms of the initial compounds and all intermediate samples are qualitatively the same and have a characteristic diffraction pattern for cubic structure. This confirms the formation of continuous δ-solid solutions in the system.

Lattice parameters of high-temperature modifications of ternary compounds and high-temperature solid solutions formed between them were calculated using the TOPAS 3.0 computer program, and the results are listed in Table 1.

Fig. 1 also shows the composition dependence graph of lattice parameters of HT-Ag₈Si₈₋ₓGeₓSe₆ solid solutions. As can be seen, the lattice parameters of solid solutions increase linearly with Ge substitution and follow Vegard's rule.

3.2 Solid phase equilibria of the Ag₂Se–Ag₈GeSe₆–Ag₈SiSe₆ system.

In Figure 4, the solid solutions formed in the Ag₈GeSe₆–Ag₈SiSe₆ system form connode lines with RT-Ag₂Se(α-phase) and with each other. Boundary connode lines divide the system into 10 heterogeneous areas. Seven areas are two-phase (α+β, α+γ, α+δ, α+ε, β+γ, γ+δ, δ+ε), and three fields are three-phase (α+β+γ, α+γ+δ, α+ε+δ). The noted phase fields were confirmed by the XRD. Figure 5 shows the powder diffractograms of several mixtures.
Fig. 4. Isothermal section at 300K

Fig. 5. Powder XRD patterns (300 K) of $\text{Ag}_2\text{Se}\text{-Ag}_8\text{SiSe}_6 - \text{Ag}_8\text{GeSe}_6$ alloys: (a) alloy #1, (b) alloy #2, (c) alloy #3 and (d) alloy #4 in Fig.4
3.3. Projection of the liquidus surface of the Ag$_2$Se–Ag$_8$GeSe$_6$–Ag$_8$SiSe$_6$ system

The projection of the liquidus surface of this system consists of two areas (Fig. 6). One of them corresponds to the initial crystallization of the α' solid solution based on the high-temperature modification of the Ag$_2$Se compound, and the second to the δ phase. These areas are bounded by the e_1e_2 curve reflecting the monovariant eutectic equilibrium (eutectic coordinates are 60 mol% Ag$_8$GeSe$_6$ and 21 mol% Ag$_8$SiSe$_6$, respectively):

$$L \rightleftharpoons \alpha' + \delta \ (T = 1120 – 1103 K) \quad (1)$$

![Fig. 6. Projection of the liquidus surface and studied polythermal sections of the Ag$_2$Se–Ag$_8$GeSe$_6$–Ag$_8$SiSe$_6$ system. Primary crystallization area: 1 (α'), 2 (δ).](image)

3.4. Some polythermal sections of the phase diagram

Isopleth sections Ag$_8$SiSe$_6$–[A] (Fig. 7) and 5Ag$_2$Se–[B] (Fig. 8) (where [A] is two-phase alloy in the Ag$_2$Se–0.2Ag$_8$GeSe$_6$ section with 50 mol% Ag$_2$Se; [B] is Ag$_8$Si$_{0.5}$Ge$_{0.5}$Se$_6$ solid solution) were studied in order to determine the crystallization sequence of the phases and the exact position of the monovariant line e_1e_2 and liquidus surface of the system.

The Ag$_8$SiSe$_6$–[A] section. The liquidus of this section consists of two curves (Figure 7). These curves correspond to the primary crystallization of the α' and δ solid solutions. At the point of intersection of these curves (5 mol% Ag$_8$SiSe$_6$), the $\alpha' + \delta$ eutectic mixture crystallizes from the liquid. The monovariant process (1) occurs in a very small temperature range and has a sharp peak in the DTA curves. Therefore, the $L+\alpha'+\delta$ three-phase area formed during the reaction (1) is delimited by a broken line. The reaction (1) ends with the formation of the two-phase field $\alpha'+\delta$. The horizontal line at 403K below the solidus corresponds to the polymorphic transformation of α' solid solutions based on the high-temperature modification of the Ag$_2$Se. The temperature of this transformation is constant and is the same with the corresponding transition temperature for the pure Ag$_2$Se. Near this transition
temperature, both modifications of Ag$_2$Se indicate negligible solubility. A decrease in polymorphic transformation temperatures of Ag$_8$SiSe$_6$ and Ag$_8$GeSe$_6$ compounds is observed.

Fig. 7. Isoleth section Ag$_8$SiSe$_6$-[A] ([A] is two-phase alloy in the Ag$_2$Se–0.2Ag$_8$GeSe$_6$ section with composition 50 mol% Ag$_2$Se)

Fig. 8. Isoleth section Ag$_2$Se-[B] ([B] is Ag$_8$Si$_{0.5}$Ge$_{0.5}$Se$_6$ solid solution)
The Ag₃Se-[B] section. The picture of phase equilibria in this section is similar to the previous polythermal section (Fig. 8). This section also passes through the primary crystallization areas of α' and δ solid solutions. A monovariant eutectic equilibrium (1) is observed in the system below the liquidus, and a two-phase field α'+δ is formed. The horizontal line at 403K corresponds to the polymorphic transformation of Ag₃Se.

Conclusion

Here, a new picture of phase equilibria in the Ag₃Se–Ag₈SiSe₆–Ag₈GeSe₆ system was obtained. The diagram of the solid phase equilibria of the system at 300 K, the projection of the liquidus surface, as well as the T-x diagrams of the Ag₈SiSe₆–Ag₈GeSe₆ boundary system and two internal polythermal sections were constructed. In the Ag₈SiSe₆–Ag₈GeSe₆ system, continuous solid solutions (δ-phase) were found between the high-temperature modifications of the primary compounds with a cubic structure. It was determined that the formation of solid solutions is accompanied by a decrease in the polymorph transition temperatures of both compounds. This extends the lower limit of the homogeneity region of the ion-conducting δ-phase below room temperature. The fact that the liquidus surface of the δ-phase is very wide creates a good opportunity for growing single crystals of this phase by the directional crystallization method. It is also shown that the liquidus surface of the Ag₃Se–Ag₈SiSe₆–Ag₈GeSe₆ system consists of two areas corresponding to the initial crystallization of the (HT-Ag₃Se) and δ-phase.

References

37. Ashirov G.M. Phase equilibria in the Ag$_8$SiTe$_x$–Ag$_8$GeTe$_6$ system. *Azerbaijan Chemical Journal*. 2022, no. 1, pp. 89-93. doi.org/10.32737/0005-2531-2022-1-89-93
43. Amirasanlova A. J., Bananly K.N., Imamaliyeva S. Z., Yusibov Y. A., Bananly M. B. Phase equilibria in the Ag$_8$SiSe$_6$–Ag$_8$SiTe$_6$ system and characterization of solid solutions Ag$_8$SiSe$_{6-x}$Te$_x$. *Applied Chemical Engineering*, 2013, vol. 6, no. 2. DOI: http://dx.doi.org/10.24294/ace.v6i2.2162
ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Ag₂Se–Ag₈GeSe₆–Ag₈SiSe₆ И ХАРАКТЕРИСТИКА ТВЕРДЫХ РАСТВРОВ Ag₈Si₁₋ₓGeₓSe₆

Г.М. Аширов, К.Н. Бабанлы, Л.Ф. Машадиева, Ю.А. Юсибов, М.Б. Бабанлы

АННОТАЦИЯ: Методами дифференциально-термического и рентгенофазового анализов изучены фазовые равновесия в системе Ag₂Se–Ag₈SiSe₆–Ag₈GeSe₆. На основании экспериментальных результатов и литературных данных построены проекция поверхности ликвидуса системы Ag₂Se–Ag₈SiSe₆–Ag₈GeSe₆, изотермический разрез при 300 К и некоторые политермические сечения фазовой диаграммы. Установлено, что на боковой системе Ag₈SiSe₆–Ag₈GeSe₆ концентрационного треугольника образуются непрерывный ряд твердых растворов на основе высокотемпературной кубической модификации исходных соединений, и ограниченные твердые растворы – на основе их низкотемпературных модификаций. Образование твердых растворов приводит к резкому снижению температур полиморфных переходов тройных соединений и стабилизации высокотемпературных фаз при комнатной температуре. Поверхность ликвидуса системы Ag₂Se–Ag₈SiSe₆–Ag₈GeSe₆ состоит из 2 областей, отражающих первичные кристаллизации α'-фазы на основе HT-Ag₂Se и твердых растворов HT-Ag₈Si₁₋ₓGeₓSe₆. Полученные новые фазы представляют интерес как экологически безопасные материалы с термоэлектрическими свойствами и смешанной ионно-электронной проводимостью.

КЛЮЧЕВЫЕ СЛОВА: соединения семейства аргиродита, селенид серебра-германия, селенид серебра-кремния, фазовые равновесия, поверхность ликвидуса, твердые растворы, T-х диаграмма, параметры кристаллической решетки.
Ag$_2$Se–Ag$_8$GeSe$_6$–Ag$_8$SiSe$_6$ SİSTEMİNDƏ FAZA TARAZLIĞI VƏ Ag$_8$Si$_{1-x}$Ge$_x$Se$_6$
BƏRK MƏHLULLARIN XARAKTERİSTİKASI

1 G.M. Əşhirov, 1 K.N. Babanlı, 1 L.F. Məşədiyeva, 2 Y.A. Yusibov, 1 M.B. Babanlı

1 Akad. M.Nağıyev adına Kataliz və Qeyri-üzvi Kimya İnstitutu
AZ 1143, Baki, H.Cavid pr., 113
2 Gəncə Dövlət Universiteti
Gəncə ş., H.Əliyev pr., 429
e-mail: leylafm76@gmail.com

Xülasə: Ag$_2$Se–Ag$_8$SiSe$_6$ – Ag$_8$GeSe$_6$ sistemində faza tarazlıqları diferensial termiki analiz və rentgen faza analizi üsulları ilə tədqiq edilmişdir. Eksperimental nəticələr və ədəbiyyat məlumatları əsasında Ag$_2$Se–Ag$_8$SiSe$_6$ – Ag$_8$GeSe$_6$ sisteminin likvidus səthinin proyeksiyasi, faza diaqramının 300 K-də izotermik kəsiyi və bazi politermik kəsikləri qurulmuşdur. Müəyyən edilmişdir ki, qatılıq üçbucağının Ag$_8$SiSe$_6$ – Ag$_8$GeSe$_6$ yan tərəfində ilkin birləşmələrin yüksək temperaturlu kubik modifikasiyaları arasında fasiləsiz, aşağı temperaturlu modifikasiyaları əsasında isə məhdud bərk məhlul sahələri əmələ gəlir. Bərk məhlulların əmələ gələn birləşmələrin polimorf keçid temperaturlarının kəskin azalması və yüksək temperaturlu faza nisbətən otaq temperaturlarda stabil şərəfinə göndərib çıxır. Ag$_2$Se–Ag$_8$SiSe$_6$ – Ag$_8$GeSe$_6$ sisteminin likvidus səthi HT- Ag$_2$Se əsasında α'- fazanın və HT-Ag$_8$Si$_{1-x}$Ge$_x$Se$_6$ bərk məhlulların ilkin kristallması aks etdirən 2 sahədən ibarətdir. Alınmış yeni fəxər termoelektrik xassələrin və qarışıq ion-elektron keçiriciliyinə malik ekoloji təhlükəsiz materiallar kimi maraqlı kəşf edir.

Açar sözər: arqirodit ailəsi birləşmələri, güムüş-germanium selenidi, güムüş-silisium selenidi, faza tarazlıqları, likvidus səthi, bərk məhlullar, T-x diaqramı, kristal qəfəs parametrləri.