UDC 544.344.015.3: 546.81'86'23

MULTI-3D MODELING OF PHASE DIAGRAM OF PbTe-Bi₂Te₃-Sb₂Te₃ SYSTEM

A.I. Aghazade¹, S.M. Rustamova³, I.M. Gojayeva¹, E.N. Orujlu², D.M. Babanly^{1.2}, A.N. Mammadov^{1,3}

 ¹ Institute of Catalysis and Inorganic Chemistry of MSE Azerbaijan Republic, AZ 1143, H. Javid Ave. 113, Baku, Azerbaijan
 ² Azerbaijan State Oil and Industry University, French - Azerbaijani University, AZ 1010, Azadlyg Ave. 20, Baku, Azerbaijan
 ³ Azerbaijan Technical University, AZ1073, H. Javid Ave. 25, Baku, Azerbaijan
 e-mail: aytenagazade94@gmail.com

> *Received* 12.07.2023 *Accepted* 04.09.2023

Abstract. Using the analytical option of the Origin Lab computer program, the analytical dependences of the liquidus temperature on the composition for the PbTe-Bi₂Te₃, PbTe-Sb₂Te₃, Bi₂Te₃-Sb₂Te₃ boundary systems of the PbTe-Bi₂Te₃-Sb₂Te₃ ternary system were determined. Based on these dependencies and thermal analysis data of the ternary system, the analytical model of the temperature-composite dependence of the crystallization surfaces of PbTe, Sb₂Te₃, Bi₂Te₃ compounds and PbBi₂Te₄, PbBi₄Te₇, PbBi₆Te₁₀ phases in the PbTe-Bi₂Te₃-Sb₂Te₃ system was determined. The resulting equations made it possible to visualize the phase diagram of the PbTe-Bi₂Te₃-Sb₂Te₃ system from the side of the PbTe-Bi₂Te₃ in 3D coordinates. The analytical model of the phase diagram of the PbTe-Bi₂Te₃ system allowed constructing a three-dimensional image of equilibrium phases from different angles, to obtain two-dimensional projections and to tabulate the coordinates of the phase diagram.

*Keywords: PbTe-Bi*₂*Te*₃*-Sb*₂*Te*₃ *system, 3D analytical modeling, phase diagram, liquidus, solidus. DOI:* 10.32737/2221-8688-2023-4-353-360

1. Introduction

One of the main problems of materials science is the design of new functional materials and the expansion of their existence horizons by optimizing the desired properties and new prospects for application in various fields. In recent years, a lot of theoretical and experimental work has been done to create the thermoelectric materials, which are considered as main method to solve the problems of fuel use and energy harvesting [1-3]. Lead telluridesbased alloys are the most successfully applied thermoelectric materials used in the production of similar materials [4,5]. Also, tetradymite-type layered Bi2Te3-based alloys are classic lowthermoelectric temperature materials. and recently, their electrical and thermal properties have been enhanced through nanostructuring [6,7].

As the information on topological

insulators increased [8, 9], layered bismuth and antimony chalcogenides were also proven to host topological surface states [10-12]. Ongoing research in this field revealed that tetradymitelike ternary compounds formed in $A^{IV} -B^{V} -Te$ systems (A^{IV} -Ge, Sn, Pb; B^{V} -Sb, Bi) systems including $A^{IV}B^{V}{}_{2}Te_{4}$, $A^{IV}B^{V}{}_{4}Te_{7}$, $A^{IV}B^{V}{}_{6}Te_{10}$ are also three-dimensional topological insulators [13-21]. The creation of new multicomponent functional materials is possible based on the phase equilibria data of the corresponding systems. The desired properties can be achieved by substituting appropriate elements in these materials via the formation of solid solutions [22-25].

The main principle of building a threedimensional (3D) computer model of a T-x-y diagram of a ternary system is the construction of three-dimensional images of its surfaces and phase regions. It may take a lot of time and additional experiments to create the ideal model. However, the computer model does not contain the methodological errors detected during the construction of phase diagrams using traditional methods [26].

The phase relationship in the PbTe- Bi_2Te_3 - Sb_2Te_3 system was studied by using

2. Modeling Technique

DTA measurements.

The analytical method, tested in [29-31], was used for the three-dimensional modeling of crystallization surfaces in the $PbTe-Bi_2Te_3$ -

 Sb_2Te_3 system. For 3D modeling of crystallization surfaces of phases the following equation was used:

powder XRD, DTA, and SEM results of the

equilibrated alloys [27,28]. In this research, the

analytical method was used for 3D modeling of

crystallization surfaces of the PbTe-Bi2Te3-

Sb₂Te₃ system based on the data of boundary

systems and a small number of experimental

$$T_{1(1-2-3)} = y T_{1(1-2)}(x_1) + (1-y) T_{1(1-3)}(x_1) + a x_1 (1-x_1)^2 y (1-y)$$
(1)

Here $y=x_2/(x_2+x_3)$, $y=x_3/(x_2+x_3)$, x_1 , x_2 and x_3 - are mole fraction of 1, 2, 3 components; $T_{1(1-2)}$ and $T_{1(1-3)}$ – are liquidus temperatures for boundary binary systems 1-2 and 1-3. The parameter a_1 is determined from the experimental data of the ternary system PbTe-Bi₂Te₃-Sb₂Te₃.

Modeling is made in the following order. First, the temperature dependences on the composition T = f(x) and T = f(y) were determined for the liquidus of boundary binary systems. Next, based on the experimental data of the PbTe-Bi₂Te₃-Sb₂Te₃ ternary system, the function T = f(x,y) is defined, where: x-=x(PbTe): y=x(Bi₂Te₃)/[x(Sb₂Te₃)+ x(Bi₂Te₃)]; x_i – molar fractions of PbTe, Bi₂Te₃, Sb₂Te₃ compounds. To determine the boundaries of immiscibility of liquid alloys, the asymmetric version of the model of regular solutions

$$\Delta G_T^0 = [a + b(1 - x)^2](1 - x)x + RT[x \ln x(1 - x)\ln(1 - x)]$$
⁽²⁾

And the thermodynamic condition for internal stability

$$(\partial^2 \Delta G^0 / \partial x^2)_{P,T} = -2^* (a + b^* x^2 + 2^* b^* x^* (x-1) + b^* x^* (3^* x-1)) + 8.31^* T / (1-x) + 8.31^* T / (x-1) + 8.31^* T / (x-1)$$

were used. The obtained analytical expressions for the PbTe-Bi₂Te₃-Sb₂Te₃ ternary system and its boundary binary systems are given in Tables 1 and 2. The analytical dependencies are given in the form used by the Origin Lab computer program.

2.1. Boundary binary systems

The boundary sides of the analyzed system were studied. According to PXRD (Powder X-ray Diffraction) and DTA (Differential Thermal Analysis) data, the existence of three PbBi2Te4, PbBi4Te7, and PbBi₆Te₁₀ tetradymite-like layered ternary compounds was confirmed. All listed ternary compounds melt by peritectic reactions at 864, 856, and 851 K, respectively [32]. According to [33-35], two members of nPbTe·mSb₂Te₃ homologues series, namely, PbSb₂Te₄ and $PbSb_4Te_7$ are formed in the $PbTe-Sb_2Te_3$

system, while further studies [35-39] show that earlier reported $Pb_2Sb_6Te_{11}$ compound is stable only in a small temperature range and decomposes by solid-phase reaction. The Bi_2Te_3 -Sb₂Te₃ system is characterized by the formation of continuous solid solutions with a tetradymite-like structure [21].

Here and throughout the text, the following notation is adopted: α -is solid solutions based on PbTe; β -is solid solutions based on Bi₂Te₃ and Sb₂Te₃.

Phase diagrams	System, region	Equations: T,K=f(x)	Eq.
	$x=x(Bi_2Te_3)$	$x=x(Bi_2Te_3)$	N.
	Bi ₂ Te ₃ -PbTe.	1198-288.4*x-	4
1198s	liquidus α-PbTe,	1224*x^2+1321*x^3	
	$x = 0 \div 0.62$		
1100-	liquidus p_1p_2 ,	694.5+593.7*x-	5
	x=0.62÷0.7	518.5*x^2	
1000-	liquidus p ₂ p ₃ e,	776.4+264,5*x-	6
	x=0.7÷0.825	215.4*x^2	
900- 1.+a	liquidus B-BiaTea	654+354*x-148*x^2	7
	$x=0.85 \div 1$		
875 p.	alidua a DhTa	1100 220*** 20450*	0
884 L+1 P, L+II L+B 858	solidus α -PDTe,	1190-230*X-20430* 	0
850- α+1 850- 850- 848 - 1-01	X=0-0.18	X^2+03470*X^3	0
$1+11$ Ξ $111+\beta$ β	solidus α -PbTe,	4/3+4510*x-	9
PbTe 20 40 60 80 Bi_Te,	x=0.12÷0.18	13000*x^2	
	solidus β -Bi ₂ Te ₃ ,	760+100*x	10
Fig. 1. Phase diagram of PbTe-Bi ₂ Te ₃	x=0.88÷1		
[32] system	solidus β -Bi ₂ Te ₃ ,	-9155+23100*x-	11
•	x=0.88÷0.91	13333*x^2	
т. К	Bi ₂ Te ₃ - Sb ₂ Te ₃ .		12
900-	$x=x(Bi_2Te_2)=0\div 1$	895-35*x+15*x*(1-x)	
895	liquidus		
	inquitaus		
The second se	$x=x(Bi_2Te_2)=0\div1$	895-35*x-15*x*(1-x)	13
860	solidus	075 55 X 15 X (1 X)	15
850-	sondus		
Sb ₂ Te ₁ 20 40 60 80 Bi ₂ Te ₃			
Bi,Te, mol%			
Fig. 2. Phase diagram of $Bi_2 1e_3$ -			
$SD_2 Ie_3 [20]$ system			
1290 Januari and Anna Paris and Anna Paris and Anna Paris	Sb ₂ Te ₃ -PbTe		
1200	liquidus α-PbTe	653+539*x+5.8*x^2	14
1150	$x=x(PbTe)=0.38\div1$		
1100	liquidus p ₄ e ₂ , x=		
1060	x(PbTe)=0.36÷0.38	765+250*x	15
Ê 1000	liquidus β -Sb ₂ Te ₃		
900 Pb_Sb_Te_+	$x=x(PbTe)=0\div0.36$	895-46*x-180*x^2	16
850 855 P1 860	solidus β -Sb ₂ Te ₃	895-650*x+1875*x^2	17
noo ⁰ /	$x=x(PbTe)=0\div0.08$		
750	solidus β-Sb ₂ Te ₂	555+5750*x-	18
Sb ₂ Te ₃ mole fraction PbTe	$x=x(PbTe)=0.05\div0$	25000*x^2	
	1		
Fig. 3. Phase diagram of Sb ₂ Te ₃ -PbTe	solidus a-PhTe	58828+113775*x-	19
[39] system	$x=x(PhT_{e})-0.96-1$	53750*x^2	17
-	solidus a_DhTa	$A/6 \pm A325 * (1 v)$	
	$v = v(DhT_{0}) -$	105/15*/1 v)A2	20
	$\frac{\Lambda - \Lambda (\Gamma \cup \Gamma \cup)}{\Lambda - \Lambda (\Gamma \cup \Gamma \cup)}$	10040 (1-X) ⁻²	20
	0.90-0.94		1

Table 1. Phase diagrams and analytical dependencies for liquidus and solidus surfaces of the PbTe-Bi₂Te₃, PbTe-Sb₂Te₃, and Sb₂Te₃–Bi₂Te₃ systems (equations are presented in computer variation).

2.2.System PbTe-Bi₂Te₃-Sb₂Te₃

Sb₂Te₃ system are given in Table 2 (equations 21-28).

Table 2. Analytical dependencies of the phases of the PbTe-Bi₂Te₃-Sb₂Te₃ system.

	T,K=f(x,y);	
Phase number	$x=x(PbTe): y=x(Bi_2Te_3)/[x(Sb_2Te_3)+x(Bi_2Te_3)]; x_i-mole$	
in Fig. 4.	fractions of the PbTe, Bi ₂ Te ₃ , Sb ₂ Te ₃	
1	(1197-351*(1-x)-276.7*(1-x)^2-26.8*(1-x)^3)*y+	21
	$(653+539*x+5.8*x^2)*(1-y)+70*y*(1-y)*(1-x)$	
	x=0÷0.625, y=0÷1	
2	(1197-1465,3*x+9728*x^2-91304*x^3)*(1-y)+(1079-	
	1923,1*x+5841,7*x^2-6624,48*x^3)*y-48*y*(1-y), x=0.842÷1,	22
	y=0÷1;	
	(446+4325*x-10545*x^2)*(1-y)+ (443,5+2065*x)*y,	
	x=0.954÷0.832, y=0÷1	
5	694.5+593.7*(1-x)-518.5*(1-x)^2)*y+(765+250*x)*(1-y)	
	+70*y*(1-y)*(1-x) x=0.625÷0.71, y=0÷0.95	23
6	(776,4+264,5*x-215,4*x^2)*(1-y)+(596,6+677,5*x-	
	437,5*x^2)*y, x=0.695÷0.875, y=0÷1	24
7	$(546+592*x-280*x^2)*(1-y)+(731+130*x)*y, x=0.81\div0.875,$	25
	y=0÷1	
9	$(629,6+421,9*(1-x)-190,5*(1-x)^2)*y+(895-46*x-180*x^2)*(1-x)^2)*y+(1-x)^2)$ y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)^2)y+(1-x)y+(1-x	26
	y)+ 70*y*(1-y)*(1-x); y=0÷1	
11	(-13642+34100*x-20000*x^2). x=0.9÷0.97, y=0÷1	27
12,13,14	12550+26300*x; 9542-26300*x; -5975+26300*x	28

According to the numbers of the indicated fragments of the phase diagram of the PbTe- Bi_2Te_3 -Sb₂Te₃ system, T,K=f(x,y) are visualized in Fig 4:

Fig. 4. 3D view of the phase diagram of the PbTe- Bi_2Te_3 - Sb_2Te_3 system from the side of the PbTe- Bi_2Te_3 system.

- 1- Liquid surface of solid solutions based on α -PbTe;
- 2- Solidus surface of solid solutions based on α-PbTe;
- 3- Solid solution based on α -PbTe;
- 4- Plane obtaining peritectic PbBi₂Te₄ compound
- 5- Liquidus surface of the peritectic PbBi₂Te₄ compound;
- 6- Liquidus surface of peritectic PbBi₄Te₇ and PbBi₆Te₁₀ compounds;
- 7- Liquidus surface of the peritectic Pb₂Bi₆Te₁₁ compound;
- 8- Liquid surface of solid solutions based on β -Bi₂Te₃;
- 9- Liquid surface of solid solutions based on β -Bi₂Te₃ and β -Sb₂Te₃;
- 10- Solid solution based on β -Bi₂Te₃ and β -Sb₂Te₃;
- 11- Solidus surface of solid solutions based on β -Bi₂Te₃ and β -Sb₂Te₃;
- 12-14- Planes perpendicular to obtaining peritectic phases PbBi₂Te₄, PbBi₄Te₇, PbBi₆Te₁₀;
- 15- Heterogeneity areas of solid solutions based on α -PbTe-+ PbBi₂Te₄;
- 16- Heterogeneity area of PbBi₂Te₄ + PbBi₄Te₇ phase;
- 17- Heterogeneity area of PbBi₄Te₇ + PbBi₆Te₁₀ phase;
- 18- Heterogeneity area of PbBi₆Te₁₀+ solid solutions based on β -Bi₂Te₃ and β -Sb₂Te₃.

3. Conclusion

The use of 3D modeling made it possible to determine the analytical dependences of integral and partial thermodynamic properties depending on the mole fractions of all components in the entire concentration range $(x_i=0\div1)$ in the 300-1250 K temperature range.

Based on obtained data, the homogeneity areas of stable solid solutions and the areas of the formation of ternary compounds and the multiphase diagram of the PbTe-Sb₂Te₃-Bi₂Te₃ system in three-dimensional space were determined. Analytical dependences, in the form of 3D model, according to the analytical option of the Origin Lab program, contain, respectively, 100x100 = 10,000 and 50x50 = 2500 tabular data in the form of matrices that can be used for choose the optimal values of the composition, and temperature for the synthesis of PbTe, Bi₂Te₃, Sb₂Te₃ binary compounds and three-component phases in the PbTe-Bi₂Te₃ -Sb₂Te₃ system.

The obtained 3D model of the phase diagram also makes it possible to better understand the crystallization processes in the system via visualization of liquidus and solidus surfaces.

Acknowledgment

The work was supported by the Azerbaijan Science Foundation - Grant № AEF-MCG-2022-1(42)-12/10/4-M-10.

References

- Morelli D.T. Thermoelectric Materials. In: Kasap S., Capper P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Cham. 2017, pp. 1379-1390.
- 2. Shevelkov A.V. Chemical aspects of the design of thermoelectric materials. *Russian Chemical Reviews*, 2008, vol. 77, no. 1, pp. 1-19.
- Gayner C., Kar K.K. Recent advances in thermoelectric materials. *Progress in Materials Science*, 2016. vol. 83. pp. 330– 382.
- 4. LaLonde A.D., Pei Y., Wang H., Snyder G.J. Lead telluride alloy thermoelectrics. */Materials Today*, 2011, vol. 14, no. 11, pp. 526-532.
- Fu L., Yin M., Wu D., Li W., Feng D., Huang L., He J. Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects. *Energy & Environmental Science*, 2017, vol. 10, pp. 2030-2040.
- 6. Hong M., Chen Z. G., Zou J. Fundamental and progress of Bi₂Te₃-based

thermoelectric materials. *Chinese Physics B*, 2018, vol. 27, p. 048403.

- Poudel B., Hao Q., Ma Y., Lan Y., Minnich A., Yu B., Yan X., Wang D., Muto A., Vashaee D., Chen X., Liu J., Dresselhaus M.S., Chen G., Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. *Science*, 2008, vol. 320, pp. 634-638.
- 8. Qi X.L., Zhang S.C. Topological insulators and superconductors. *Reviews of Modern Physics*, 2011, vol. 83, pp. 1057.
- 9. Qi X.L., Zhang S.C. The quantum spin Hall effect and topological insulators. *Physics Today*, 2010, vol. 63, no. 1, p. 33.
- Hu L., Gao H., Liu X., Xie H., Shen J., Zhu T., Zhaoa X. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects, *Journal of Materials Chemistry*, 2012, no. 22, p. 16484.
- Lamuta, C., Campi D., Cupolillo A., Aliev Z.S., Babanly M.B., Chulkov E.V., Politano A., Pagnotta L. Mechanical properties of Bi₂Te₃ topological insulator investigated by density functional theory and nanoindentation. *Scripta Materialia*, 2016, vol. 121, pp. 50–55.
- 12. Heremans J.P., Cava R.J., Samarth N. Tetradymites as thermoelectrics and topological insulators. *Nature Reviews Materials*, 2017, no. 2, pp. 17049.
- Zhang H., Liu C.X., Qi X.L., Dai X., Fang Z., Zhang S.C. Topological insulators in Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃ with a single Dirac cone on the surface. *Nature Physics*, 2009, vol. 5, no.6, pp. 438–442.
- Flammini R., Colonna S., Hogan C., Mahatha S., Papagno M., Barla A., Sheverdyaeva P., Moras P., Aliev Z., Babanly M.B. Evidence of β-antimonene at the Sb/Bi₂Se₃ interface. *Nanotechnology*, 2018, vol. 29, no. 6, pp. 065704.
- 15. Politano A., Caputo M., Nappini S., Bondino F., Aliev Z.S., Babanly M.B., Chulkov E. Exploring the surface chemical reactivity of single crystals of binary and ternary bismuth chalcogenides. *Journal of Physical Chemistry C*, 2014, vol.118, pp.21517-21522.

- 16. Nurmamat M., Okamoto K., Zhu S., Menshchikova T.V., Rusinov I.P., Korostelev V.O., Miyamoto K., Okuda T., Miyashita T., Wang X., Ishida Y., Sumida K., Schwier E.F., Ye M., Aliev Z.S., Babanly M.B., Amiraslanov I.R., Chulkov E.V., Kokh K.A., Tereshchenko O., Shimada K., Shin S., Kimura A. Topologically non-trivial phase-change compound GeSb₂Te₄. ACS Nano. 2020, vol. 14, no. 7, pp. 9059–9065.
- 17. Pacilè D., Eremeev S.V., Caputo M., Pisarra M., De Luca O., Grimaldi I., Fujii J., Aliev Z.S., Babanly M.B., Vobornik I., Agostino R.G., Goldoni A., Chulkov E.V., Papagno M. Deep Insight Into the Electronic Structure of Ternary Topological Insulators: A Comparative Study of PbBi₄Te₇ and PbBi₆Te₁₀. *physica status solidi (RRL) – Rapid Research Letters*, 2018, vol. 12, no.12, p. 1800341.
- Shvets I.A., Klimovskikh I.I., Aliev Z.S., Babanly M.B., Sánchez-Barriga J., Krivenkov M., Shikin A.M., Chulkov E.V. Impact of stoichiometry and disorder on the electronic structure of the PbBi₂Te_{4-x}Se_x topological insulator. *Physical Review B*, 2017, vol. 96, pp. 235124 -7.
- Li R., Liu G., Jing Q., Wang X., Wang H., Zhang J., Ma Y. Pressure-induced superconductivity and structural transitions in topological insulator SnBi₂Te₄. *Journal of Alloys and Compounds*, 2022, vol. 900, p.163371.
- 20. Orujlu E.N., A.E. Seidzade A.E., Aliev Z.E., Amiraslanov I.R., Babanly M.B. Synthesis and crystal structure of a new 9P–Type layered Van der Waals compound SnBi₄Te₄. *Chemical problems*. 2020, vol. 18, no. 1, pp. 40-48.
- 21. Babanly M.B., Chulkov E.V., Aliev Z.S., Shevelkov A.V., Amiraslanov I.R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. *Russian Journal of Inorganic Chemistry*, 2017, vol. 62, pp. 1703-1729.
- Mammadov A.N., Asadov M.M., Mustafaeva S.N., Tagiev D.B.. Effect of Composition on the Physical Properties of (TlInSe₂)_{1-x}(TlGaTe₂)_x Solid Solutions. *Inorganic Materials*, 2015, vol.51, no.12, pp.1232-1236.

- 23. Orujlu E.N. Phase relations and characterization of solid solutions in the SnSb₂Te₄-MnSb₂Te₄ system. *New Materials, Compounds and Applications,* 2020, vol. 4, no. 1, pp. 38-43.
- 24. Orujlu E.N., Ziya S.A., Babanly M.B. The phase diagram of the MnTe–SnTe–Sb₂Te₃ ternary system and synthesis of the iso-and aliovalent cation-substituted solid solutions. *Calphad*, 2022, vol. 76, pp. 102398.
- Hattori Y., Tokumoto Y., Kimoto K., Edagawa K. Evidences of inner Se ordering in topological insulator PbBi₂Te₄-PbBi₂Se₄-PbSb₂Se₄ solid solutions. *Scientific Reports*, 2020, vol. 10, pp. 7957.
- 26. Mamedov A.N., Salimov Z.E., Mashadiyeva L.F., Babanly M.B. Thermodynamic calculation and 3D modeling of the liquidus and immiscibility surfaces of the Ge-Cu-Tl system. American Chemical Science Journal, 2016, vol. 10, no. 2, pp. 1-5.
- Aghazade A.I., Orujlu E.N., Imamaliyeva S.Z., Mamedov A.N., Babanly M.B. New topological insulator phases of variable compositions in the PbTe-Sb₂Te₃ -Bi₂Te₃ system. Properties and Uses of Antimony Editor: David J. Jenkins, Nova Science Publishers, 2022, pp. 95-112.
- Aghazade A.I. Phase equilibria of the PbBi₂Te₄-"PbSb₂Te₄" section of the PbTe-Bi₂Te₃-Sb₂Te₃ system and some properties of the solid solutions. *Azerbaijan Chemical Journal*, 2020, no. 4, pp. 53-59.
- Yusibov Yu.A., Alverdiev I.Dzh., Mashadieva L.F., Babanly D.M., Mamedov A.N., Babanly M.B. Experimental study and 3D modeling of the phase diagram of the Ag–Sn–Se system. *Russian Journal of Inorganic Chemistry*, 2021, vol. 63, no.12, pp. 1622-1635.
- Ahmadov E.J., Mammadov A.N., Guliyeva S.A., Babanly M.B. Modeling of phase diagram of the system BiI₃-Bi₂S₃-Bi₂Te₃. *New Materials, Compounds and Applications*, 2021, vol. 5, no. 1, pp.5-11.
- Hasanova G.S., Dashdiyeva G.B., Yusibov Y.A., Babanly M.B. Thermodynamic properties of the Bi₂Te₃ and Bi₄Te₅ compounds. *Chemical problems*, 2020,

vol.18, no. 3, pp. 315-324.

- Gojayeva I.M., Babanly V.I., Aghazade A.I., Orujlu E.N. Experimental reinvestigation of the PbTe–Bi₂Te₃ pseudobinary system. *Azerbaijan Chemical Journal*, 2022, no. 2, pp. 47-53.
- Karpinskii O.G., Shelimova L.E., Avilov E.S., Kretova M.A. X-ray Diffraction study of mixed-layer compounds in the PbTe-Bi₂Te₃ system. *Inorganic Materials*, 2002, vol. 38, no. 1, pp.17–24.
- 34. Shelimova L.E., Karpinskii O.G., Konstantinov P.P., Avilov E.S., Kretova M.A., Zemskov V.S. Crystal structures and thermoelectric properties of layered compounds in the ATe–Bi₂Te₃ (A = Ge, Sn, Pb) systems. *Inorganic Materials*, 2004, vol. 40, no. 5, pp. 451-460.
- 35. Shelimova L.E., Karpinskii O.G., Svechnikova T.E., Avilov E.S., Kretova M.A., Zemskov V.S. Synthesis and structure of layered compounds in the PbTe-Bi₂Te₃ and PbTe-Sb₂Te₃ systems. *Inorganic Materials*, 2004, vol. 40, no. 12, pp. 1264-1270.
- Ikeda T., Collins L.A., Ravi V.A., Gascoin F.S., Haile S.M., Snyder G.J. Selfassembled nanometer lamellae of thermoelectric PbTe and Sb₂Te₃ with epitaxy-like interfaces. *Chemistry of Materials*, 2007, vol. 19, pp. 763-767.
- Ikeda T., Haile S.M., Ravi V.A., Azizgolshani H., Gascoin F., Snyder G.J. Solidification processing of alloys in the pseudo-binary PbTe-Sb₂Te₃ system. *Acta Materiala*, 2007, vol. 55, no.4, pp.1227-1239.
- Ikeda T., Toberer E.S., Ravi V.A., Snyder G.J., Aoyagi S., Nishibori E. In situ observation of eutectoid reaction forming a PbTe-Sb₂Te₃ thermoelectric nanocomposite by synchrotron X-ray diffraction. *Scripta Materialia*, 2009, vol. 60, no. 5, pp. 321-324.
- Ikeda T., Snyder G.J. Nanostructure formation in bulk thermoelectric compounds in the pseudo binary PbTe-Sb₂Te₃ system. *Materials Research Society*, 2010, vol. 1267, pp. 1267- DD06-07.

МУЛЬТИ-3D МОДЕЛИРОВАНИЕ ФАЗОВОЙ ДИАГРАММЫ СИСТЕМЫ РbTe-Bi₂Te₃-Sb₂Te₃

А.И. Агазаде¹, С.М. Рустамова³, И.М. Годжаева¹, Э.Н. Оруджлу², Д.М. Бабанлы^{1,2}, А.Н. Мамедов^{1,3}

¹ Институт Катализа и Неорганической Химии, Пр. Г.Джавида, 113, AZ 1143 Баку, Азербайджан ²Азербайджанский Государственный Университет Нефти и Промышленности, Французско-Азербайджанский Университет Пр. Азадлыг, 20, AZ 1010 Баку, Азербайджан ³Азербайджанский Технический Университет, Пр. Г.Джавида, 25, AZ 1073 Баку, Азербайджан

Аннотация: С помощью аналитической опции компьютерной программы OriginLab определены аналитические зависимости температуры ликвидуса от состава для граничных систем PbTe-Bi₂Te₃, PbTe-Sb₂Te₃, Bi₂Te₃-Sb₂Te₃ тройной системы PbTe-Bi₂Te₃-Sb₂Te₃. На основании этих зависимостей и данных термического анализа тройной системы построена аналитическая модель поверхностей кристаллизации соединений PbTe, Sb₂Te₃, Bi₂Te₃ и фаз PbBi₂Te₄, PbBi₄Te₇, PbBi₆Te₁₀ в системы PbTe-Bi₂Te₃-Sb₂Te₃. Полученные уравнения позволили визуализировать фазовую диаграмму системы PbTe-Bi₂Te₃-Sb₂Te₃ со стороны PbTe-Bi₂Te₃ в трехмерных координатах. Аналитическая модель фазовой диаграммы системы PbTe-Bi₂Te₃-Sb₂Te₃ позволяет представить трехмерное изображение равновесных фаз с разных ракурсов, получить двумерные проекции и табулировать координаты фазовой диаграммы.

Ключевые слова: система PbTe-Bi₂Te₃-Sb₂Te₃, трехмерное аналитическое моделирование, фазовая диаграмма, ликвидус, солидус.

PbTe-Bi2Te3-Sb2Te3 SİSTEMİNİN FAZA DİAQRAMININ MULTİ-3D MODELLƏŞMƏSİ

A.İ. Ağazadə¹, S.M. Rüstəmova¹, İ.M. Qocayeva¹, E.N. Oruclu², D.M. Babanlı^{1,2}, A.N. Məmmədov^{1,3}

> ¹ Kataliz və Qeyri-üzvi Kimya İnstitutu, H.Cavid pr., 113, AZ 1143 Bakı, Azərbaycan
> ²Azərbaycan Dövlət Neft və Sənaye Universiteti, Azərbaycan-Fransız Universiteti, Azadlıq pr., 20, AZ 1010 Bakı, Azərbaycan
> ³Azərbaycan Texniki Universiteti, H.Cavid pr., 25, AZ 1073 Bakı, Azərbaycan

Xülasə: OriginLab kompüter proqramının analitik variantından istifadə etməklə PbTe-Bi₂Te₃-Sb₂Te₃ üçlü sisteminin PbTe-Bi₂Te₃, PbTe-Sb₂Te₃, Bi₂Te₃-Sb₂Te₃ sərhəd sistemləri üçün likvidus temperaturunun tərkibdən analitik asılılıqları müəyyən edilmişdir. Bu asılılıqlar və üçlü sistemin termiki analizi məlumatları əsasında PbTe-Bi₂Te₃-Sb₂Te₃ sistemində PbTe, Sb₂Te₃, Bi₂Te₃ birləşmələrinin və PbBi₂Te₄, PbBi₄Te₇, PbBi₆Te₁₀ fazalarının kristallaşma səthlərinin analitik modeli işlənmişdir. Alınan tənliklər PbTe-Bi₂Te₃-Sb₂Te₃ sisteminin faza diaqramının PbTe-Bi₂Te₃ tərəfdən müxtəlif bucaqlardan üçölçülü təsvirini qurmağa, ikiölçülü proyeksiyalarını əldə etməyə və faza diaqramının koordinatlarını cədvəlləşdirməyə imkan verir. Açar sözlər: PbTe-Bi₂Te₃-Sb₂Te₃ sistemi, 3D modelləşdirmə, faza diaqramı, likvidus, solidus.