

PREPARATION, IDENTIFICATION AND STUDY THE BIOLOGICAL ACTIVITY OF NOVEL HETEROCYCLIC COMPOUNDS DERIVED FROM AZO-CHALCONE

Ruwa M. Mauf 1*, Neam H. Saleem²

¹Department of Chemistry, College of Education for Girls, University of Mosul, Mosul, Iraq. ²Department of Chemistry, College of Education for Pure Science, University of Mosul, Mosul, Iraq. *e-mail: orgachem@uomosul.edu.iq

> Received 14.06.2024 Accepted 05.08.2024

Abstract: This work describes the preparation and spectroscopic investigation of new heterocyclic compounds derived from the 4-aminoantipyrene moiety. The compound (R1)3-((1,5-dimethyl-3-oxo-2phenyl-2,3-dihydro-1H-pyrazol-4-yl)diaz-enyl)-4-hydroxybenzaldehyde was prepared by reacting 4aminoantipyrene with 4-Hydroxybenzaldehyde according to the cold condition at (0-5) Celsius. This represents the starting point to create novel azo-chalcone compounds with a new nucleus as the alpha-beta unsaturated group, and the formation of compound (R2-6) via acetophenone derivatives using ethanol as a solvent under a basic medium, and for synthesis of various compounds of 4-((5-((Z)-3-argio-3-oxoprop-1-en-1-yl)-2-hydroxyphenyl)diazenyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one, using the cyclization of these compounds via (urea and hydrazine hydrate) to forming five and six novel heterocyclic rings of 4-((5-(2-amino)-4-Argyo-6H-1,3-oxazine-6-yl)-2-hydroxyphenyl(diazenyl)-1,5-dimethyl-2-phenyl-1,2-dihydroand *3H-pyrazole-3-one* $[R_7,$ 4-((5-(5-(4-argiophenyl)-4,5-dihydro-1H-pyrazol-4-yl)-2-11], hydroxyphenyl)diazenyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazole-3-one [$R_{12,16}$], respectively. Some diagnostic measurements have been used to characterize these molecules, such as melting point, thin-layer chromatography, measuring Nuclear Magnetic Resonance, Spectroscopy in the Infrared, and Mass Spectrometry, and determining the effectiveness of some of these compounds by diagnosing their effectiveness against types of pathogenic bacteria.

Keywords: Chalcone, Azo-Chalcone, 4-Amino Antipyrene, Biological Activity

DOI: 10.32737/2221-8688-2025-2-272-285

1. Introduction

Chalcone is one of the carbonyl compounds and among the most widespread organic compounds in biological and organic chemistry [1, 2] and it is a source for building important compounds in the industrial and medical fields [3]. α-β unsaturated compounds contain a carbonyl group that exists in a replaced state with an unsaturated group (C=C) [4]. The double bond (C-C) and the bond (CO-O) are separated by a single bond [5], and the two bonds are in an alternating state. The coupling between the two groups represents the possibility of spreading charges across the four atoms, which gives stability to the chain system due to the presence of resonance [6].

Because of the presence of the keto ethylenic moiety, CO-CH=CH-, chalcones and their derivatives are regarded valuable. Moieties in the domain of synthetic and heterocyclic organic chemistry [7] were created via Claisen-Schmidt synthesis [8] by condensation acetophenones together with benzaldehyde substitutes [9].

Chalcones consider α - β unsaturated compounds that dissolve in organic solvents but not in water. Kastanek first used chalcone terminology in 1899, when he conducted preliminary experiments in preparing natural colored compounds [10]. Chalcone is a basic chemical scaffold found in many plant products such as fruits, tea, and vegetables [8]. Chalcone has an extrinsic spectrum of biological activity [11] and occupies an important place in biochemistry and medicine because it is antiinflammatory [12, 13]. It is antibacterial, antiviral [14], anti-tuberculous [15], antitumor [16, 17], anti-HIV [18], anti-fungal, antioxidant [19] and anti-ulcer agents [20].

Azo-chalcone dyes, common in vegetables, plants, and fruits, are compounds with systems linked to heterocyclic or

degradable aromatic rings [21]. These a major source for the synthesis of new organic compounds, such as heterocyclic compounds, which may have promising biological activity [22].

2. Experimental part

2.1. Material and methods.

The Smp.30 device, produced by the British company STURART, was employed to measure melting temperatures to the prepared compounds. The chemicals used were purchased from BHD and Fluka and Sigma Aldrich. The infrared spectra were measured using IR Affinity-S 1, a Shimadzu type device at a wavenumber of (4000-600 cm-1).

¹H-NMR using America Bruker 400MHz, TMS was used internal standard; DMSO-d⁶ was used as the solvent. The mass spectrums were also observed via (GCMS-QP 2010 plus), Japanese origin, a Shimadzu type device. The reaction was followed using thin -layer chromatography (TLC) was carried out in silica gel (120 mash) coated plates (1×10). The media for microorganisms was sterilized using an autoclave device equipped from a Spanish company, the dishes were developed in an incubator device, and testing was done in the laboratories of the Microbiology Division in the College of Science.

2.2. General procedure for synthesis of 3-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)diazenyl)-4-

hydroxybenzaldehyde (R1) [23].

A (0.01 mol, 2.03 g) of 4-amino antipyrin was dissolved in mixture of 7 ml concentrated hydrochloric acid (37%) with (7 ml) of (H₂O) in an ice bath while constant stirring until the temperature reacted (0-5 °C). In another bowl, 1.6 g of sodium nitrite was dissolved in 8 ml H₂O. The sodium nitrate solution was added in batches to the first solution with continuous stirring (1-2ml) for each batch. In this case, it is necessary to maintain the temperature of the ice bath so that the temperature does not rise above 5 °C. The solution formed diazonium salt in the ice bath solution- was prepared (0.1g) from 4hydroxy benzaldehyde and dissolved it in 2 ml of diluted (10% NaOH) by adding 5 ml of H₂O. The last solution was stirred and then added to 2 ml of diazonium salt.

Observing the formation of dye, the solution leaves for 15 min in an ice bath to settle. The crystals of the dye thickly separated, filtered and recrystallized with ethanol: water at ratio 1:2 orang needle crystals separated at melting point (168-169 °C), (monitored via TLC). The solvent system (4:1) benzene:MeOH. RF was 6.5.

2.3. Preparation of 4-((5-((Z)-3-argio-3-oxoprop-1-en-1-yl)-2-hydroxyphenyl)-diazenyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (R_{2-6}) [24]

In a 100 ml round-bottomed flask (0.004 mol) of the aldehyde derivative ($\mathbf{R_1}$) was placed and 10 ml of ethanol with (0.004 mol) of acetophenone derivatives dissolved in 10 ml of ethanol were added to it. The reaction mixture

was stirred with a magnetic stirrer for 2 hours and the reaction was noted (TLC), the solvent system was benzene:methanol (4:1). After heating was completed, the mixture was cooled and 15 ml of chilled water was poured in. Then it was filtered and recrystallized with ethanol. The azo-chalcone compound (\mathbf{R}_{2-6}) was recognized. The physical data of these compounds are listed in Table 1.

$$\begin{array}{c|c}
 & O \\
 & N \\$$

Table 1. Physical data of compounds (R2-6)

Co mp No.	Ar	Molecular formula and m.wt g/mol	M.P. (°C)	Yield %	R_f	Colour
R ₂	-{	C ₂₅ H ₁₉ N ₅ O ₅ 469	222- 223	85	0.6 25	Brown powder
R ₃	NO₂ 	C25H19N5O5 469	178- 180 82		0.5 42	Brown powder
R4		C ₂₅ H ₁₉ N4O ₃ CL 458	-229 228	73.5	0.4 3	Brown powder
R ₅	CI 	C ₂₅ H ₁₉ N ₄ O ₃ CL 458	-110 108	74	0.6 6	White powder
R ₆	_{{}}−СН3	C ₂₆ H ₂₂ N ₄ O ₃ CL 473	-228 227	90	0.7 1	White powder

2.4. Preparation of 4-((5-(2-amino-4-argio-6H-1,3-oxazin-6-yl)-2-hydroxy-phenyl)diazenyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one(R7-11) [25].

A mixture of 0.02 mol of chalcone derivatives (R₂₋₆) with (0.02 mol, 1.2 g) of urea in (10%) NaOH was dissolved, the mixture was stirred with a magnetic stirrer for (3-4 hours), 20

ml of cold water was poured into the reaction mixture and stirring was continued for another hour. Then the reaction mixture was left in the refrigerator for (24 hours). Then drops of hydrochloric acid were added to the equation, the resulting precipitate was filtered and recrystallized from methanol. Physical data of compounds (R7-11) are given in Table 2.

$$\begin{array}{c|c} O & O & O \\ \hline N & N & O \\ \hline Ar & O & OH \\ \hline O$$

Table 2. Physical data of compound (R_{7-11})

Comp.		Molecular		,/		
No Ar		formula and	M.P.	Yield	R_f	Colour
110		m.wt, g/mol (°C)		%	11	Colour
\mathbf{R}_7	NO ₂	$C_{26}H_{22}N_5O_5$	180-	81	0.45	Orange
N 7		512	182	01	0.43	powder
	NO ₂	$C_{26}H_{22}N_5O_5$	72-73	0.		White
R ₈		512		85	0.55	powder
D.	-\$-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	C26H22N6O3CL	-164	75	0.6	Yellow
R ₉	-}	501 16		/5	0.6	powder

R ₁₀	-Ş-Ş-	C ₂₆ H ₂₂ N ₆ O ₃ CL 501	86-88	88	0.44	Yellow powder
R ₁₁	−-{}-СН3	C27H25N6O3 481	212- 213	90	0.62	White powder

2.5. Preparation of 4-((5-(3-argio-1H-pyrazol-5-yl)-2-hydroxyphenyl)diazenyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (R_{12-16}) [26].

In a solution prepared from (0.0015 mole) chalcone derivatives (\mathbf{R}_{2-6}) dissolved in 30 ml absolute ethanol and added (0.0015 mol, 0.048 g) hydrazine hydrate with few drops from

glacial acetic acid, the reaction of mixture was refluxed for (15 hour), the resultant precipitate is filtered and washed by water then recrystallized via ethanol monitored by (TLC) the solvent system 4:1 benzen:MeOH. Physical properties of compounds (R_{12-16}) are listed in Table 3.

Table (3) Physical data of compound (R₁₂₋₁₆)

Comp No.	Ar	Molecular formula and m.wt; g/mol	M.P(⁰ c)	Yield %	R_f	Colour
R ₁₂		C ₂₆ H ₂₂ N ₆ O ₄ S 512	220- 221	72	0.6 3	Yellow powder
R ₁₃	NO ₂	C ₂₆ H ₂₂ N ₅ O ₅ S 512	76-77	74.5	0.6 5	Wight powder
R ₁₄	ξ. Cι	C ₂₆ H ₂₂ N6O ₃ SC L 501	-167 165	65	0.4 5	Yellow powder
R ₁₅		C ₂₆ H ₂₂ N ₆ O ₃ SC L 501	96-97	55	0.3 5	Brawn powder
R ₁₆	_ { }_CH3	C ₂₇ H ₂₅ N ₆ O ₃ S 481	175- 177	80	0.6	White powder

2.6. Mass spectra study [27]

(0.01) g of the sample was dissolved in (5 ml) of ethanol, the device injector was set (2) microliters of sample by using a capillary column of the type (inert cap 1) is a non-polar column bonded 100% dimethylpoly siloxane (DMSO) with a length (30) meters, the carrier gas was helium at a flow rate of (30 ml / min).

At 50°, the oven temperature program was initiated with split ratio of 1:2, this temperature was continued for 2 minutes, after which the temperature was raised at a rate of 25°C per minute until reaching a temperature of 200°C, and then held for 1 minute with a total holding

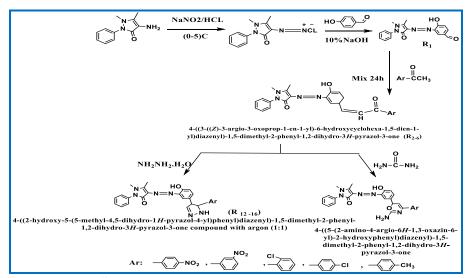
time of 7 minute. The mass spectra were recorded with a range of m / z 900 -30 with an energy of 27 ev.

2.7. The Biological study [28, 29]

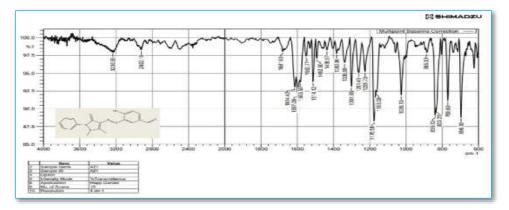
Preparation of the agar-Mueller-Hinton medium used in bacterial growth: agar-weld fusion method was used action biological effectiveness of some synthesized chemical compounds ($\mathbf{R_1}$, $\mathbf{R_2}$, $\mathbf{R_5}$, $\mathbf{R_8}$, $\mathbf{R_9}$, $\mathbf{R_{14}}$, $\mathbf{R_{16}}$), where (38g) molar "Hinton Agar" was dissolved via distilled boiled water, the acid function of a culture medium was neutralized to (pH = 7). The resulting solution was placed in an autoclave under pressure (150 Pounds/inj) at

(121°C) after the temperature decreased to about (50°C), then the resulting solution was poured into a glass dish with a thickness of (1-0.5 cm) for each. After that, the solution is left in the incubator for 24 hours until it solidifies.

Preparation of selected compounds. These compounds (R_1 , R_2 , R_5 , R_8 , R_9 , R_{14} , R_{16}) are prepared by dissolving them using a solvent other than water, which is dimethyl sulfoxide, at a concentration of 200 mg/1ml and 500 mg/1ml.


The bacterial isolates used. In the

current research, four kinds of bacteria were identified: Gram-positive bacteria called *Staphylococcus aurous* and Gram-negative bacteria (*Proteus mirabilis, Ecoli, Morganella morgani*) and the uses of these types in applying the effectiveness through the metric cylinder method with a cork borer. The process of making holes and spreading certain bacteria on the surface of the dish was performed using sterile cotton. Leave the dishes at a temperature of (37) for (20 minutes) dishes are inserted at (372) for (20min).


3. Result and discussion

The research included the preparation of azo-chalcone derivatives by reacting the Diaz onium salt with 4-hydroxybenzaldehyde to form the aromatic aldehyde derivative, which reacts via Claisen–Schmidt condensation with

acetophenone derivatives. The other step involved cyclizing the azo-chalcone derivatives with cyclizing agents such as urea and hydrazine [30] according to the Scheme 1.

Scheme 1. Synthesis of compounds (R_{1-16})

Fig. 1. FTIR spectra of (R_1)

The aromatic aldehyde derivatives (R₁) was identified by FTIR, where it gave,1436 cm⁻¹

for the N=N azo group and aldehyde carbonyl group an absorption band appeared at 1681 cm-

1, an absorption band for OH- group of phenol appeared a peak 3236 cm⁻¹ for aldehyde stretch [**31**] (Fig. 1). However, the H¹-NMR spectra for (R1) compounds as shown up: 2.44ppm(s,CH₃,3H at CH₃) 3.15ppm(s,CH₃,3H-

N-CH₃), 7.35 ppm (s,1H,phenyl ring), 7.37ppm (m,5H,for phenyl ring), 7.71ppm(d.2H,phenyl ring),9.44ppm(s,1H,C=O).9.82ppm(s,1H.OH phenol), as displayed in Fig. 2.

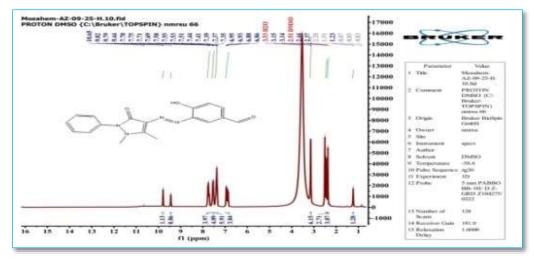


Fig. 2. ¹H-NMR spectra of (R₁)

Table 4. FTIR spectra of compounds (R₂₋₆)

		Tubic	IR.KBr, v(cm ⁻¹⁾					
Comp No	Ar	N=N	C=C	ОН	C-H aromatic	C=O	C==C	Others
\mathbf{R}_2		1452	1608		3048	1654	1413- 1579	N-O 1308 Sym 1509 Assy
\mathbb{R}_3	NO ₂	1421	1601	3580	3012	1689	1421- 1577	N-O 1136 Sym 1499Assy
\mathbb{R}_4		1509	1601	3580	3010	1650	1455- 1576	C-Cl 746
\mathbf{R}_5	CI	1449	1601	3567	3050	1677	1421- 1576	C-Cl 700
\mathbf{R}_{6}		1454	1605	3582	3049	1618	1416- 1579	

Table 5. The ¹H-NMR spectra data were indicated

Comp. No	R	¹ H-NMR (ppm) DMSA-d ⁶
\mathbb{R}_2	−Ş-√-NO ₂	2.42 (5,3H, for CH ₃), 3.14 (S, 3H, for N-CH ₃) 6.82- 6.85 (m, CH, 1H for aromatic ring), 7.38-7.52 (m, CH,1H for aromatic ring), 7.67-(d, CH,2H for methylene group), 9.95 (S, 1H,OH - phenol).
\mathbf{R}_5	CI 	2.43(s,3H, for CH ₃),3.13 (s, 3H, for N-CH ₃),6.8 (s,1H,1H for 1-ethylene),7.31-7.75(m,9H,1H for aromatic ring),9.44 (s, 1H, OH-phenol).

As for the compounds (**R** 2-6), their infrared spectrum showed a clear band at (1509-1421) cm⁻¹ for N=N azo-group, and carbonyl

group at (1689-1618) cm⁻¹. C-H aromatic at (3050-3010) cm⁻¹ and strong bands related at C=C Alkene at (1608-1601) cm⁻¹.

Then, all spectroscopic information about respectively, and Fig. 3 and 4. FTIR and ¹H-NMR as shown in Tables 4 and 5,

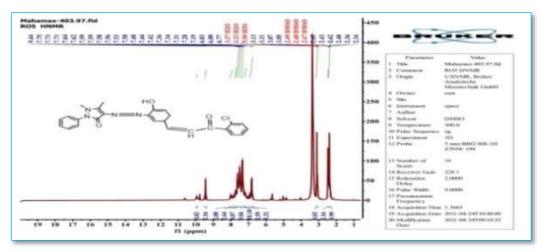
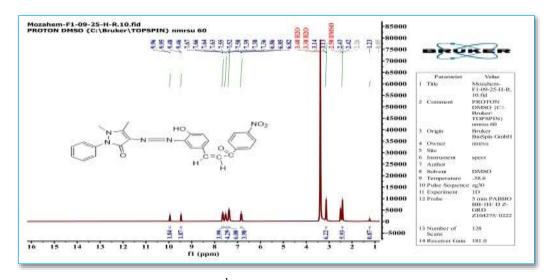



Fig. 3. ¹H-NMR spectra of (R₂)

Fig. 4. ¹H-NMR spectra of (R₅)

Table 6. FTIR spectra of compounds (R₇₋₁₁)

Comp.	Ar		IRN cm ⁻¹						
No	Ar	N=N	C=C	C=N	С-Н	NH2	Others		
R ₇	NO ₂	1436	1611	1596	3033	3209	N-O 1341 Sym 1491 Assy.		
R8	NO₂ NO₂	1429	1602	1576	3088	3256	N-O 1335 Sym 1470 Assy.		
R9		1458	1616	1597	3033	3216	C-Cl 746		
R ₁₀	CI 	1456	1595	1576	2163	3566	C-Cl 763		
R ₁₁	−	1457	1602	1577		3546			

Urea was used to convert chalcone group in compound (R₂₋₆) to 1,3-oxazine compounds (R₇₋₁₁) in 10% NaOH via cyclization chalcone group with stir the mixture magnetically for 3-4 hours. These compounds were characterized by FTIR and showed the following main

absorption bands (1429 -1458) cm⁻¹ for N=N, (2163-3088) cm⁻¹ for C=C, and Clear bands appear for the amine group (NH₂) at (3209-3566) cm⁻¹. All spectroscopic information is shown in Tables 6 and 7.

Table 7. The ¹H-NMR spectra data.

Comp. No	R	H¹-NMR(PPM)-DMSO-d ⁶
R ₁₁	<u>-</u>	2.51ppm (s, 3H, forCH ₃), 3.13 (S,3H, for N-CH ₃), 6.83 (S, 2H, 2H for NH ₂), 6.86-7.67 (m,8H, CH for benzene ring), 9.47 (S, ,1H,OH-phenol)

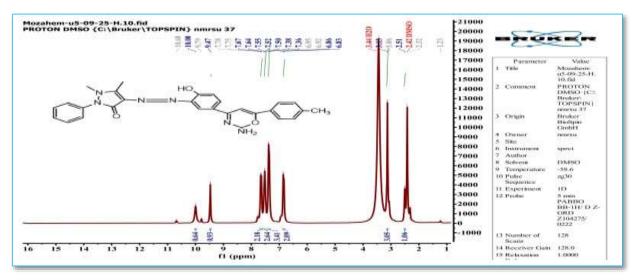


Fig. 5. ¹H-NMR spectra to sample (R11)

Table 8. FTIR spectra of compounds (R_{12-16})

Comp	Ar	N=N	C=C	С-Н	C=N	N-H	Other
No				Aliphatic			
R12	NO ₂	1456	1591	2617	1631	3400	N-O 1373 Sym 1456 Assy
R13	NO ₂	1514	1598	2858	1643	3325	N-O 1377 Sym 1475 Assy
R14	CI	1454	1577	2922	1602	3398	C-C1/750
R15	CI SAME	1444	1593	2400	1593	3375	C-C1/750
R16	СН3	1498	1579	2953	1600	3325	

Hydrazine hydrate was used to convert chalcone group in compounds (\mathbf{R}_{2-6}) to pyrazole compounds (\mathbf{R}_{12-16}) in absolute ethanol and

reflexed the mixture for (15 hour) with few drops Glacial acetic acid. These compounds characterized by FTIR and showed the following main absorption bands (1444-1556) cm⁻¹ for N=N, (1577-1598) for C=C, (2400-2617) cm⁻¹ for C-H Aliphatic, (1593-1643) cm⁻¹

for C=N, and (3325-3400) cm-1 for N-H. All spectroscopic data appeared in Tables 8 and 9.

Table 9. The	¹ H-NMR	spectra data	were indicated
--------------	--------------------	--------------	----------------

Comp No	R	H¹-NMR (ppm)-DMSO-d ⁶
R ₁₃	NO ₂	2.07 (s,3H, for CH ₃), 3.86 (s, 3H for N-CH ₃), 6.80 - 7.63 (m, 11H, CH for aromatic ring), 8.07 (s,NH,1H for pyrazole ring), 8.41 (s,1H,OH - phenol).
R ₁₆		2.43(s,3H, for CH3),3.17 s, 3H for N-CH3),6.83(s,1H,CH for pyrazole ring),7.19-7.46(m,12H,CH for aromatic ring),9.8(s,1H,OH for phenol

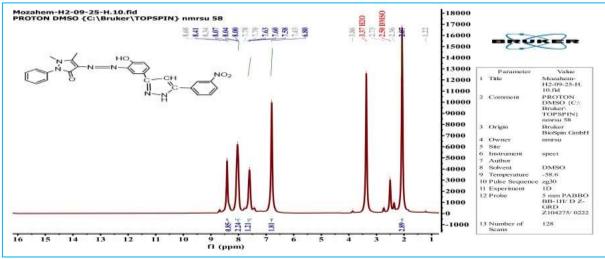
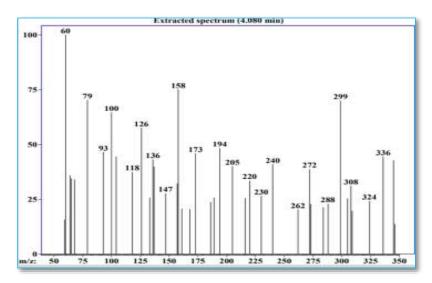



Fig. 6. ¹H-NMR spectra to sample (R₁₃)

Fig. 7. GCMS of (R_1)

Results of mass spectrometry study:

Using mass spectrometry is considered an important analytical tool [32] as a measure the mass-to-charge ratio involving one or more molecules present in the sample. The use of

mass spectrometry to calculate the exact molecular weight and identify unknown compounds by determining their molecular weight, and for the purpose of proving the structural formula [33] of the prepared

compounds, the compounds ($\mathbf{R_1}$, $\mathbf{R_4}$, $\mathbf{R_5}$, $\mathbf{R_{10}}$) were chosen and a gas-mass chromatography was measured for them, where the fractionation showed their exact molecular weights, which are equal to the molecular weights calculated theoretically. Where the compound ($\mathbf{R_1}$) gave the mass/charge ratio ($\mathbf{M/Z}$) at (336) with a main fragmentation bund base peak (60) and the compound ($\mathbf{R_{13}}$) gave ($\mathbf{M/Z}$)=(495) with a base peak (45) at abundance 100%, the compound ($\mathbf{R_6}$) also gave the mass ratio ($\mathbf{M/Z}$)

at (452) with a base peak at (107) abandunce 100%, while the compound $(\mathbf{R_8})$ gave a ratio $(\mathbf{M/Z})$ at (524) a main or base peak at (44). So, these ratios are considered identical to the molecular weights calculated theoretically, in addition to the other broken units whose masses are listed in Table 10, and the spectral shapes $(\mathrm{Fig.}\ 7,\ 8,\ \mathrm{and}\ 9)$ they describe the mass spectrometry of the compounds $(\mathbf{R_1})$ $(\mathbf{R_{13}})$ and $(\mathbf{R_6})$, respectively.

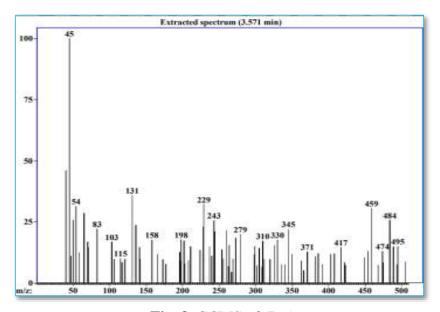
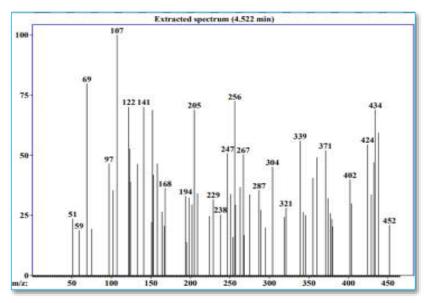



Fig. 8. GCMS of (R_{13})

Fig. 9. GCMS of (R6)

Table 10. The mass spectra of the prepared compounds

1 4010	100 The mass speed of the pr	eparea com	7041145
Comp. No	Structure	m/z value	Base peak

R ₁	N N N N N N N N N N N N N N N N N N N	336	60
R ₁₃	NO N	495	45
\mathbf{R}_{6}	N N N N N N N N N N N N N N N N N N N	452	107
\mathbf{R}_8	N N N N N N N N N N N N N N N N N N N	524	44

Some of the breakdowns of compounds can be following Scheme 2: example the compound interpreted hypothetically and as in the (R_6) .

Scheme 2. Proposed fragmentation pattern of compound (R₆)

Antimicrobial activity outcome:

The bacterial activity of some laboratory-prepared compounds (R1, R2, R5, R8, R9, R14, R16) was evaluated Each compound is prepared against one type of bacteria isolated and identified, namely gram-Negative bacteria, there are three types howeve isolated Including (*Proteus Mirabili, Morganella Morgani, Ecoli*) and *staphylococcus aurousis* gram positive bacteria The tested compounds showed high inactivation activity, and some of them were moderate, at a concentration of 500 mg/1ml, while the 200 mg/1ml concentration of the

prepared compounds did not give any significant activity. Note that a pilot study was conducted at concentrations less than 200 mg/1ml as mentioned in the literature, and it did not give any significant effectiveness.

The highest effectiveness was observed for the two compounds (**R**₁₄, **R**₁₆), as they gave an inhibition diameter of (35) (31) and respectively with *Morganella Morgani* bacteria and the diameter of inhibition (30) with *E.coli* and the Table 11 shows the sensitivity of the bacteria to some of the prepared compound and Fig. 10 below illustrate this.

Table 11. Activity results for the compounds against Bacteria

Comp. No	The symbol of the compound on the plate	Inhibitory Zone (mm) at cosentration 200 mg/1ml	Inhibitory Zone (mm)at concentration 500 mg/1ml			
			Staph aureu	E.coli	Morganella Mirabilis	Proteus Mirabilis
R1	1					

R2	6	 		20	
R5	5	 22	15	15	20
R8	10	 28			
R9	9	 			
R14	7	 30	30	35	
R16	8	 25	30	31	

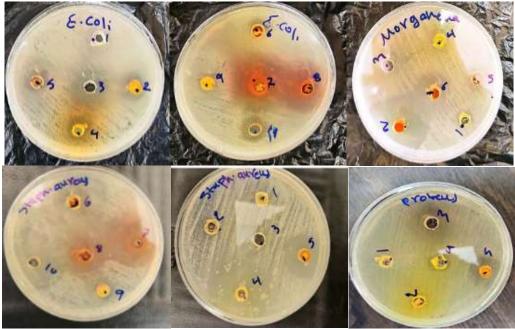


Fig. 10. The anti-bacterial activity of prepared compounds

4. Conclusion

New azo-chalcone derivatives were prepared as heterocyclic compounds investigated by several important spectroscopic measurements. The biological activity of some of them was also studied, and compounds with high inhibitory activity or strong inhibition were identified. For example, two compounds (R14, R₁₆) showed good results against two types of bacteria Morganella Morgani bacteria *E.col*i, respectively, which cause diseases in humans. In light of the phenomenon of bacterial resistance to many antibiotics, these compounds can be considered as alternatives for treatment if they are combined with antibiotics to increase

their effectiveness; especially when binding to these compounds, synergy can occur between them and achieve good results. The importance of the research is the use of synthetic or semisynthetic alternative drugs, since they are used to treat infections caused by these bacteria, such as urinary tract infections, wound infections and Therefore. we recommend burns. histological and anatomical studies be carried out on the prepared compounds so that they can used as promising alternatives. recommend further study of azo-chalcone compounds and preparation of other new lines of them.

References

- 1. Sekar P., Kumar Sh., Raju S.K. Chemistry and synthetic methodologies of chalcones and their derivatives: A review. *International Journal of Biological and Pharmaceutical Sciences Archive*, 2023, **Vol. 05(01)**, pp. 51–
- 072. doi.org/10.53771/ijbpsa.2023.5.1.0020
- 2. Wilhelm A., Bonnet S.L., Twigge L., Rarova L., Stenclova T., Visser H.G., Schutte-Smith M. Synthesis, characterization and cytotoxic evaluation of chalcone derivatives. *J. Mol.*

- *Struct.* 2022, **Vol. 1251,** 132001. doi:10.1016/j.molstruc.2021.132001.
- 3. Al-Tufah M.M. Synthesis and characterization of some new cyclohexenone compounds derived from chalconesce and evaluation of bacterial activity. *College of Basic Education Researchers Journal*, 2022, **Vol. 18(4)**, p. 748-806.
- 4. Nguyen T.T., Phan N.T.S., Tran C.T.H., Tran Q.D., Ly D., Nguyen T.T., Nguyen K.X. A one-pot synthesis of disubstituted thiazoles from chalcone C-H bonds, elemental sulfur, and Glycine ethyl ester. *Synlett*. 2022, **Vol.** (33), p. 555–558. doi:10.1055/s0041-17378.
- 5. Hussein M.S., Khalaf M.M. Synthesis bischalcones, pyrazoline ring and evaluation microbial activity for some of them. *Samarra J. Pure Appl. Sci.*, 2022, **Vol. 4(3)**, p. 46-60.
- 6. Caray F.A. "Organic Chemistry" 4th Ed., Mc Graw-Hill Higher Education, 2000 pp. 861.
- 7. Mukhtara Sh.S., Morsya N.M., Hassana A.S., Hafeza T.S., Hassaneen H.M., Saleh F.M. A Review of Chalcones, Synthesis, Reactions, and Biological Importance. *Egypt. J. Chem.* 2022, **Vol. 65(8)**, p. 379 395.
- Reddy J.S., Sravya 8. Rammohan A., Rao Ch.N., Zyryanov G.V. Chalcone properties synthesis, and medicinal applications: a review. Environmental Chemistry Letters. 2020, 1-38 p. doi.org/10.1007/s10311-019-00959-w.
- 9. Vidja H., Shiyaliya B., Patel J., Nagar A. Synthesis of chalcones. *Journal of Emerging Technologies and Innovative Research* (*JETIR*), 2020, **Vol. 7(7)**, p. 915-923
- Carey F. "Introduction to Organic Chemistry" Ed., Streitwieses Heath Co Ck and Kosower, Colorado 2007, p. 794-799.
- 11. Obaid S.S., Abd Allatif N.A.A. Biological activity of new heterocyclic compounds derived from chalcone. *Eurasian Chem. Commun.* 2023, **Vol. 5**, p. 712-719. doi.org/10.22034/ecc.2023.390874.1611.
- 12. Ngameni B., Cedric K., Mbaveng A.T., Erdogan M., Simo I., Kuete V., Dastan A. Design, synthesis, characterization, and anticancer activity of a novel series of Osubstituted chalcone derivatives. *Bioorganic & Medicinal Chemistry Letters*. 2021, **Vol.** 35, p. 2-7. doi.org/10.1016/j.bmcl.2021.127827.

- 13. Emam S.H., Sonousi A., Osman E.O., Hwang D., Kim G.D., Hassan R.A. Design and synthesis of methoxyphenyl- and coumarin-based chalcone derivatives as anti-inflammatory agents by inhibition of NO production and down-regulation of NF-κB in LPS-induced RAW264.7 macrophage cells. *Bioorg Chem.* 2021, **Vol. 107**, 104630. doi: 10.1016/j.bioorg.2021.104630.
- 14. Baper Sh.H., Mohammed M.S. Preparation and characterization of new azo-chalcone mixed with imidazole ligand coordinated with some chelate complexes and study antitumor activity. *HIV Nursing*. 2022, **Vol. 22(2)**, p. 318-326.
- 15. Thapa P., Upadhyay S.P., Suo W.Z., Singh V., Gurung P., Lee E.S., Sharma R., Sharma M. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer's disease. *Bioorg. Chem.* 2021, **Vol.** 108, p. 104681. doi:10.1016/j.bioorg.2021.10468125.
- 16. Ouyang Y., Li J., Chen X., Fu X., Sun S., Wu Q. Chalcone derivatives: Role in anticancer therapy. *Biomolecules*. 2021, Vol. 11, p. 894. doi:10.3390/biom11060894.
- Salehi B., Quispe C., Chamkhi I., El Omari N., Balahbib A., Sharifi-Rad J., Bouyahya A., Akram M., Iqbal M., Docea A.O., Caruntu C., Leyva-Gómez G., Dey A., Martorell M., Calina D., López V., Les F., Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinicalevidence. *Front.Pharmacol.* 2021, Vol. 11, p. 592654. doi:10.3389/fphar.2020.592654.
- 18. Sharma H., Patil Sh., Sanchez T.W., Neamati N., Schinazi R.F., Buolamwini J.K. Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors. *Bioorganic & Medicinal Chemistry*, 2011, **Vol.** 19, p. 2030-2045. doi.org/10.1016/j.bmc.2011.01.047.
- 19. Elkanz N.A.A., Hrichi H., Alolayan R.A., Derafa W., Zahou Fatin M., Bakr R.B. Synthesis of Chalcones Derivatives and Their Biological Activities, *A Review. ACS*

- *Omega*. 2022, **Vol. 32(7)**, p. 27769–27786. doi.org/10.1021/acsomega.2c01779.
- Marotta L., Rossi S., Ibba R., Brogi S., Calderone V., Butini S., Campiani G., Gemm S. The green chemistry of chalcones: Valuable sources of privileged core structures for drug discovery. *Front. Chem.* 2022, Vol. 10, pp. 1-22. https://doi.org/10.3389/fchem.2022.988376
- 21. Akbari P.M., Shah V.R. Synthesis, Characterization and Biological Evaluation of Ethyl-4'-(cyclopropane carboxamido-N-yl)-5-ary-3-oxo-3,4,5,6- tetrahydro-biphenyl-4-carboxylate. *Asian Journal of Organic & Medicinal Chemistry*, 2019, Vol. 4(4), p. 240–243 doi.org/10.14233/ajomc.2019.
- Mezgebe K., Melaku Y., Mulugeta E. Synthesis and Pharmacological Activities of Chalcone and Its Derivatives Bearing N-Heterocyclic Scaffolds: AReview. ACS Omega, 2023, Vol. 8, p. 19194–19211. doi.org/10.1021/acsomega.3c01035 ACS.
- 23. Unnisa A., Abouzied A.S., Baratam A., Che K.N.V., Hussain T., Kunduru R.D., Banu H ., Fatima S.B., Hussian A., Selvarajan K.K. characterization, Design, synthesis, computational study and in-vitro antioxidant and anti-inflammatory activities of few novel 6-aryl substituted pyrimidine azo dyes. Arabian Journal of Chemistry, 2020, Vol. **13**, 8638-8649. p. https://doi.org/10.1016/j.arabjc.2020.09.050
- 24. Mohsein H.F., Jaffer N.D., Hassen H.S., Kadhim A.A. Synthesis, Characterization and Anticancer Assessment of New Nitrogen-Cyclic Compounds. *Egypt. J. Chem.* 2022, **Vol. 65(3)**, p. 571 579. https://doi.org/10.21608/ejchem.2021.9611 2,4504.
- Amer Z. Synthesis and characterization of new Oxazine, Thiazine and Pyrazol derived from chalcones. *Baghdad Science Journal*. 2014, Vol. 11(2), p. 477-485.

- https://doi.org/10.21123/bsj.2014.11.2.477-485.
- 26. Monga V., Goyal K., Steindel M., Malhotra M., Rajani D.P., Rajani S.D. Synthesis and evaluation of new chalcones, derived pyrazoline and cyclohexenone derivatives as potent antimicrobial, antitubercular and antileishmanial agents. *Medicinal Chemistry Research*, 2014, Vol. 23(4), p. 2019-2032. https://doi.org/10.1007/s00044-013-0803-1
- Kadhium A.J., Mahdi S.M., Alrammahi F.A.H. Preparation and Characterization of new Azo Azo-Chalcone Ligands and their mixed ligands transition metal complexes with A study of Palladium Complex Anticancer Activity. *Research J. Pharm. and Tech.* 2019, Vol. 12(12), p. 5947-5955.
- 28. Sharma A., Arora S.K. A Review study on green synthesis of schiff bases. *Indian J. Appl. Res.* 2021, **Vol. 18(2)**, p. 69–72. https://doi.org/10.36106/ijar/9529205.
- 29. Rashmi A., Ashish K., Gill N.S., Rana A.C. Quinazolinone: an overview. *Int. Res. J. Pharm.* 2011, **Vol. 2**, p. 22–28.
- 30. Aljamali N.M. Survey on methods of preparation and cyclization of heterocycles. *Int. J. Chem. Mol. Eng.* 2020, **Vol. 6(92)**, p. 19-36
- 31. Mauf R.M., Sultan A.H., Farag A.M. Synthesis of Some new 2-(4-Aryliminophenoxy) N-Arylacetamide Via p-hydroxy benzaldehyde. *Baghdad Science Journal*. 2014, Vol. 11(2), p. 486-490.
- 32. Mathammal R., Sangeetha K., Sangeetha M., Mekala R., Gadheeja S. Molecular structure, vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO analysis of 3, 5 di tert butyl 4 hydroxy benzoic acid. *Journal of Molecular Structure*, 2016, **Vol. 1118**, p. 316-324.
- 33. Watson J.D., Sparkman O.D. "Introduction to Massspectrometry", 4th ed. John Wiley and Sons Ltd. 2007.