

EFFECT OF VICINAL TERT-BUTYL GROUPS ON THE CRYSTAL STRUCTURE OF THE UNSUBSTITUTED Cp2Mo2(CO)6 DIMER COMPLEX OF MOLYBDENUM

N.Z. Ibrahimova, D.B. Tagiyev, G.M. Jafarov, I.U. Lyatifov

Acad. M. Nagiyev Institute of Catalysis and Inorganic Chemistry Ministry of Science and Education of the Republic of Azerbaijan
H. Javid ave., 113, AZ 1143 Baku, Azerbaijan

e-mail: nigar-ibrahimova93@mail.ru

Received 21.09.2024 Accepted 04.11.2024

Abstract: Comparison of the structural parameters of the monosubstituted complex $({}^{1}BuCp)_{2}Mo_{2}(CO)_{6}$ (1) with the corresponding structural parameters of the disubstituted $(1,2{}^{1}Bu_{2}Cp)_{2}Mo_{2}(CO)_{6}$ (3) and unsubstituted $Cp_{2}Mo_{2}(CO)_{6}$ (2) complexes allowed us to identify the features of the crystal structure (3) caused by the presence of two tert-butyl substituents in the 1,2- (vicinal) position in the cyclopentadienyl (Cp) ring. These features are manifested primarily in the change in the length of the Mo–Mo bond, the magnitude of the rotation angle of both the ${}^{t}Bu_{2}Cp$ ring around the Ct–Mo axis and the tert-butyl groups around the $C(ring)-C({}^{t}Bu)$ bond, the length of the C–C bonds in both in the cyclopentadienyl C_{5} -ring and the tert-butyl substituent, and the values of the internal and external C–C–C angles of the cyclopentadienyl C_{5} -ring. Most of these features are due to steric interactions observed in the crystal structure (3) between different groups and fragments of the molecule.

Keywords: cyclopentadienyl ligand, tert-butyl group, carbonyl group, binuclear molybdenum complex, steric effect, crystal structure

DOI: 10.32737/2221-8688-2025-2-151-158

Introduction

The introduction of alkyl substituents into the cyclopentadienyl ring of cyclopentadienyland cyclopentadienylcarbonyl complexes of transition metals changes the electronic and steric characteristics of these complexes, which in turn affects such characteristics of the complex as redox potential, rate of the electron exchange reaction, stability in solution or in the presence of oxygen, stability to heating, catalytic activity, etc. [1-6]. Therefore, the study of the role of electronic and steric interactions substituents on the structure transformation of cyclopentadienyl complexes is an important direction in the development of organometallic chemistry [7-10].

Our interest in the crystal structure of the molybdenum complex $(^{7}Bu_{2}Cp)_{2}Mo_{2}(CO)_{6}$ (3) [11] is related to the idea that we used in interpreting the crystal structure of the monosubstituted tert-butyl complex $(^{7}BuCp)_{2}Mo_{2}(CO)_{6}$ (1) [12]. The interpretation

of the changes in the structural parameters of complex (1) compared to (2) [13] was based on the idea of the presence of steric interaction between the tert-butyl substituent in the Cp ring and the trans-carbonyl ligand (C12O3). Indeed, this interaction in (1) is quite clearly manifested in the valence angles Ct-Mo-C12, Moi-Mo-C12, C11-Mo-C12, as well as in the rotation of the 'BuCp ring around the Ct-Mo axis, away from the trans-carbonyl group. However, with distance from this region of steric interaction, the changes in the structural parameters decrease and become close to the experimental error, which does not allow us to confidently interpret the causes of these changes in the structure of (1). Therefore, a comparative analysis of the structural parameters of the monosubstituted complex (1) and the sterically more strained complex (3) with two bulky tertbutyl groups in the vicinal position can give us additional information that allows us to confirm or refute some of the assumptions made during the interpretation of the crystal structure of (1). At the same time, this analysis will allow us to clarify the features of the crystal structure (3) caused by the appearance of the second tertbutyl group in the vicinal position of the Cp ring.

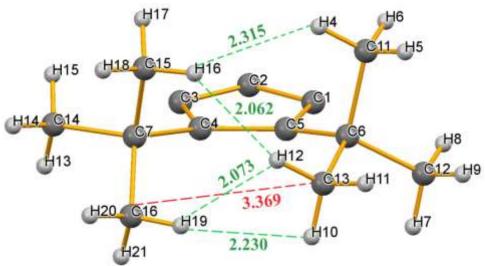
In accordance with the above, the aim of

this work is to identify the features of the crystal structure of ('Bu₂Cp)₂Mo₂(CO)₆ (**3**) [11] known in the literature by means of a comparative analysis of its structural parameters with the corresponding parameters of the monosubstituted derivative ('BuCp)₂Mo₂(CO)₆ (**1**) and the partially unsubstituted complex (Cp)₂Mo₂(CO)₆ (**2**) [13].

Experimental part

The conditions of synthesis (1) [14] and X-ray structural study of its single crystal were given in the works [12]. Deep-red crystals of the title complex suitable for single crystal X-ray analysis were grown in toluene at a temperature of -10° C.

Crystallographic data for (1) have been collected in the Cambridge Crystallographic


Data Center, CCDC: 2243119.

The synthesis of complex (3) and the X-ray structural study of its single crystal are described in [11]. Since the crystal structure of the monosubstituted complex (1) was not known at that time, a comparative analysis of these two structures was not carried out.

Results and discussion

Both complexes (1) [12] and (3) [11] are in the trans-conformation in the crystalline state. This allows us to make a well-founded comparison of the corresponding parameters and, on this basis, draw certain conclusions about the features of their structure. Thus, a comparative analysis of the structural

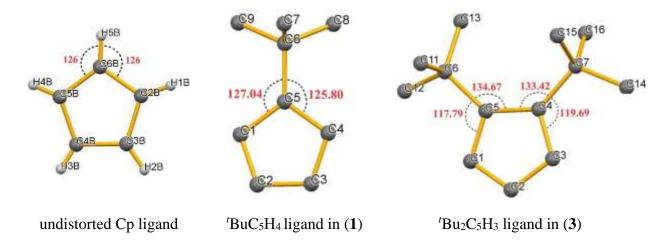
parameters of (1) [12] with the corresponding parameters of (3) [11] and, partially, (2) [13] showed that the introduction of a second tert-butyl group in the 1,2-position into the ¹BuCp ring of complex (1) is generally accompanied by a significant increase in steric tension in molecule (3).

Fig. 1. Shortened non-valent contacts H...H (less than 2.4 Å) and C...C (less than 3.4 Å) between vicinal tert-butyl groups

It was established that steric interactions between the following fragments and groups were observed in the crystal structure of (3):

- **1**. Vicinal tert-butyl substituents of the ${}^{t}Bu_{2}Cp$ ligand;
- **2.** Tert-butyl substituents and the trans-CO group;
- 3. Cis-CO groups bonded to the "neighboring" Mo atoms;
 - **4**. The C₅H₃-ring and the "neighboring"

cis-CO groups;


5. The tert-butyl substituent and the closest CH fragment of the C₅H₃-ring.

Let us briefly consider what structural data confirm the presence of each of the above types of steric interaction in (3).

- **1.** The steric interaction between the vicinal tert-butyl substituents of the ^tBu₂Cp ligand is confirmed by the following features of the crystal structure (3):
- a The presence of short non-valent contacts between the vicinal tert-butyl

substituents of the ring (Fig. 1).

b – Deviation of the values of the external angles of the ${}^{t}Bu_{2}C_{5}H_{3}$ ligand (C1–C5–C6 (117.79°), (C4–C5–C6 (134.67°), C5–C4–C7 (133.42°) and C3–C4–C7 (119.69°)) by 6–8° from the ideal value (126°) of this angle in the undistorted Cp ligand (Fig. 2). The values of these angles in (3) differ by approximately the same amount from the values of the angles (125.80° and 127.04°) observed in the tert-butylcyclopentadienyl (${}^{t}BuC_{5}H_{4}$) ligand of complex (1) (Fig. 2).

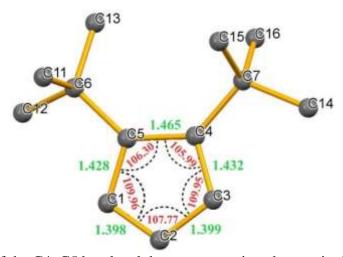


Fig. 2. Differences in the values of external C–C–C angles in 'BuC₅H₄ and 'Bu₂C₅H₃ ligands of complexes (1) and (3).

c – Rotation of the tert-butyl substituents around the C4–C7 (\approx 26°) and C5–C6 (\approx 11°) bonds counterclockwise (if viewed above the Mo–Mo bond). The values of the rotation angles (26° and 11°) are given relative to the position

of the tert-butyl substituent in (1).

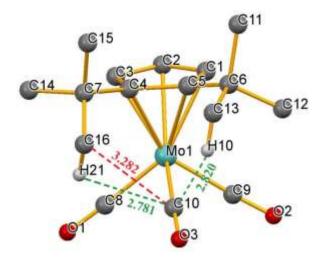
d – Elongation of the C4–C5 bond (1.465 Å) and the accompanying changes in the internal angles of the ring.

Fig. 3. Elongation of the C4–C5 bond and the accompanying changes in the internal angles of the C₅-ring in (3)

In (3), the bond between the substituted carbon atoms of the ring, i.e. the C4–C5 bond (1.465 Å) is noticeably longer than both the neighboring C–C bonds (1.432, 1.428, 1.399, and 1.398 Å) (Fig. 3) and the C–C bonds in the 'BuCp (1.437–1.398 Å) and Cp (1.408–1.399 Å) rings of complexes (1) [12] and (2) [13].

The elongation of the C4–C5 bond in (3) is accompanied by a decrease in the internal angles C1–C5–C4 and C3–C4–C5 (by 1.7–2°) and an increase in the angles C2–C1–C5 and C2–C3–C4 (by 2°) (Fig. 3) relative to the ideal value of the internal angle of a regular pentagon (108°). In this case, the angle C1–C2–C3 (107.77°) remains virtually unchanged and retains a value close to the ideal value (108°).

e – Deviation of vicinal tert-butyl substituents from the mean plane of the


'Bu₂C₅H₃ ring away from the Mo atom. Thus, in complex (**3**), the tert-butyl substituent at C5 deviates by 13.12° from the mean plane of the 'Bu₂C₅H₃ ring away from the Mo atom, and the tert-butyl substituent at C4 – by 11.34°, which is noticeably larger than in the case of the methyl substituent [15-19].

2. Steric interaction between tert-butyl substituents and the trans-CO group

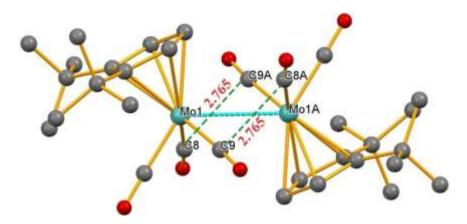
The presence of the above-mentioned steric interaction in (3) (Fig. 4) is indicated, first of all, by changes in the values of the valence angles Ct–Mo–C_{trans-CO}, Moⁱ–Mo–C_{trans-CO} and Ct–Mo–Moⁱ in the series of complexes (2) \rightarrow (1) \rightarrow (3) (Table 1). Moreover, the changes in these valence angles in (3) are greater than in the monosubstituted tert-butyl complex (1).

Table 1. Values of the bond angles Ct–Mo–C_{trans-CO}, Moⁱ–Mo–C_{trans-CO} and Ct–Mo–Moⁱ in (2), (1) and (3).

Bond Angle	Complex (2) [13]	Complex (1) [12]	Complex (3) [11]
Ct-Mo-C _{trans-CO} , (°)	113.89	116.27	118.49
Mo ⁱ –Mo–C _{trans-CO} , (°)	128.27	126.27	124.46
Ct–Mo–Mo ⁱ , (°)	117.75	117.54	117.04

Fig. 4. Shortened non-valent contacts between tert-butyl substituents and trans-CO group in molecule (3)

It should be noted that in (3) the steric interaction between the trans-carbonyl group and the tert-butyl substituent at C4 is also reflected in a slight shortening of the Csp³(16)–Csp³(7) bond (1.525(8) Å) relative to the length of 1.54 Å usually accepted for the Csp³–Csp³ bond [20] and in the rotation of the 'Bu₂C₅H₃ ring around the Ct–Mo axis, away from the


trans-carbonyl group by approximately 2.12°, compared to the position of the Cp ring in (2).

3. Steric interaction between cis-CO groups bound to "neighboring" Mo atoms (contacts C9...C8A and C8...C9A)

In molecule (3), the lengths of non-valent contacts between the carbon atoms of the ciscarbonyl groups bound to the "neighboring" Mo

atoms (C9...C8A and C8...C9A) are less than the sum of the van der Waals radii of two carbon atoms (3.4 Å) (Fig. 5). Therefore, there are steric interactions of a repulsive nature between the indicated cis-CO groups. Moreover, in (3), the steric interaction between the cis-CO ligands bound to the "neighboring" Mo atoms is enhanced compared to the corresponding interactions in (2) and (1). This is evident from

the monotonic nature of the reducing the length of non-valent contacts cis-CO...cis-CⁱOⁱ in the sequence (2) \rightarrow (1) \rightarrow (3) - 2.810 Å in (2) [13] \rightarrow 2.771 Å in (1) [12] \rightarrow 2.765 Å in (3) [11]. In our opinion, one of the reasons for the stretching of the Mo–Mo bond (3.253 Å) in (3) are the aforementioned short C9...C8A and C8...C9A contacts (2.765 Å) between the two halves of the molecule.

Fig. 5. Shortened non-bonded contacts between cis-CO groups bound to the "adjacent" Mo atoms (C9...C8A and C8...C9A) in (3)

4. Steric interaction between the C_5H_3 -ring and the "adjacent" cis-CO (C9AO2A, C8AO1A) groups.

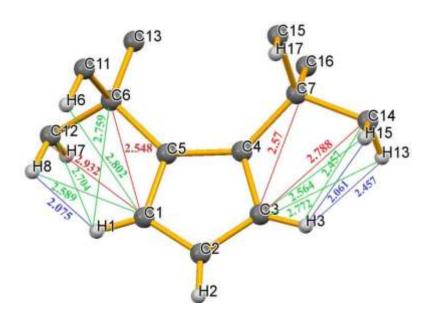
The values of non-bonded contacts between the hydrogen and carbon atoms of the ring and the C and O atoms of the "adjacent" cis-CO groups in (2), (1) and (3) are given in Table 2. In principle, in the series of complexes $(2)\rightarrow(1)\rightarrow(3)$, the monotonic nature of the primary structural changes caused by the steric interaction between the substituent and the trans-carbonyl group (Table 1) should lead to a

consistent reducing the length of non-valent contacts between the two halves of the molecules. In Section 3 we demonstrated this using the example of the reducing of cis-CO...cis-CⁱOⁱ contacts. However, from Table 2 it follows that when transition from (1) to (3), the lengths of contacts between the ring atoms and the atoms of the "neighboring" cis-CO groups (with the exception of C2...C9A (3.315 Å)) not only do not reduce, but on the contrary, increase.

Table 2. The lengths of non-valent contacts between the ring atoms and the atoms of the "neighboring" cis-CO groups in (2), (1) and (3) are less than 3.4 Å(C...C), 2.9 Å(C...H), 2.72 Å(O...H) and 3.22 Å(C...O).

Non-valent contact in (2), Å)*	Non-valent contact in (1), (Å)	Non-valent contact in (3)*, (Å)
_**		H3O2A – 2.675
_**	C4O2 ⁱ –3.212	C3O2A**
C2C1B – 3.346	C4C11 ⁱ – 3.268	C3C9A – 3.289
C3C1B – 3.291	C3C11 ⁱ -3.354	C2C9A – 3.315
H2C8B – 2.856	H3C10 ⁱ – 2.766	H2C8A – 2.867
C3C8B –3.227	$C3C10^{i} - 3.154$	C2C8A – 3.188

^{* –} For (1), (2) and (3) the atomic designations provided by the Mercury program for their crystal structures are given [13, 12, 11]


^{** -} The lengths of these contacts are greater than the sum of the van der Waals radii of the corresponding atoms.

Obviously, the elongation of the Mo–Mo bond (3.253 Å) in (3) cannot explain the observed changes in the lengths of contacts between the ring atoms and the atoms of the "neighboring" cis-CO in the series (2), (1) and (3) in Table 2. Because in (3) the contact C2...C9A (3.315 Å), unlike the other four contacts, is shortened. Therefore, the reasons for the observed tendency of changing the degree of steric interaction between the ring atoms and the atoms of the "neighboring" cis-CO groups in (3) should most likely be associated with changes in the structural parameters of the ring upon transition from (1) to (3).

5. Steric interaction between the tert-butyl substituent and the nearest CH fragment of the C_5H_3 -ring.

The lengths of the non-valent contacts (C...C, C...H and H...H) between the ${}^{t}Bu$

substituent at the C4 atom and the C3H3 fragment of the ring, as well as between the ^tBu substituent at C5 and the C1H1 fragment (Fig. 6) indicate that significant steric interactions exist between them. However, it should be noted that the degree of steric interaction of the ^tBu substituents with the corresponding CH fragments does not correspond to the value of the external C-C-C angle between interacting fragments. In particular, the lengths of non-valent contacts between the substituent and the C3H3 fragment are shorter than the contacts between the second ^tBu substituent and the C1H1 fragment, while the external angle at the C3H3 fragment (C3-C4-C7(119.69°)) is larger than the external angle C1–C5–C6(117.79°) at the C1H1 fragment.

Fig. 6. Steric interactions of 'Bu substituents with C3H3 and C1H1 fragments of the C₅H₃-ring in (3)

Steric interactions of ^tBu substituents with C1H1 and C3H3 fragments of the ring very likely also cause the elongation of the C3–C4 and C1–C5 bonds of the ring (Fig. 4), since the positive inductive effect of two tert-butyl substituents should, in principle, lead to a shortening of these bonds. We hope that a more detailed examination of both the mutual

influence of tert-butyl substituents and their interaction with the trans-carbonyl group will allow us to more clearly present the reasons not only for the above-mentioned discrepancies, but also for a number of features of the crystal structure (3), noted in sections 1–4 of this article.

Conclusion

Understanding the reasons for the change the structural parameters of the in monosubstituted complex ('BuCp)₂Mo₂(CO)₆ (1), compared to the corresponding parameters of the unsubstituted complex Cp₂Mo₂(CO)₆ (2) allowed us to identify a number of features of the crystal structure of a sterically more complex molecular system ^tBu₂Cp)₂Mo₂(CO)₆ (3). These features are due to several types of steric interactions that act between the tert-butyl substituents themselves and between the tert-butyl substituent and the trans-carbonyl group, as well as between the substituent and the nearest CH ring fragment. In addition, steric interactions of cis-carbonyl groups with cis-CO groups and the C₅H₃-ring at the "neighboring" Mo atom also contribute to the formation of structural features (3). The essence of these structural features allows us to conclude that in changes in the structural parameters of such sterically highly strained binuclear complexes; the steric factor of the alkyl substituent plays a decisive role, rather than its electronic factor.

References

- 1. Cesar S., Kyle A.G. Synthesis and Studies of Cyclopentadienyl Molybdenum Complexes. *DePaul Discoveries*, 2016, **Vol. 5(2)**, p. 1-5.
- 2. William E.G. Complementary use of electrochemistry and synthetic redox chemistry in the oxidation of decamethylferrocene: an integrated advanced laboratory experiment. J. Chemical Education, 2018, Vol. 95, p. 1648-1653. DOI:10.1021/acs.jchemed.8b00021
- 3. Ibrahimova N.Z., Aliyev A.Sh., Tagiyev D.B., Jafarov G.M., Lyatifov I.U. Electrochemical study of sym. polymethylferrocene/sym.polymethylferricini um (Me_nFc/Me_nFc⁺) (n = 6, 8, 10) redox systems in organic solutions. *Azerbaijan Chemical Journal*, 2022, **no. 4**, p. 8-14. DOI 10.32737/0005-2531-2022-4-8-14
- 4. Torriero A.A.J. On Choosing Ferrocene as an Internal Reference Redox Scale for Voltammetric Measurements: A Cautionary Tale. *Medicinal & Analytical Chemistry International, J.* 2019, **Vol. 3(4)**, p. 1-8. DOI: 10.23880/macij-16000151
- 5. Thiruvengadam M., Stephen L.G., Andreas F. **Syntheses** of some new methylcyclopentadienylmolybdenum complexes: Characterizations, crystal structures and comparisons with related complexes. Inorganica Chimica Acta, 2010, 20-24. Vol. **363**. p. https://doi.org/10.1016/j.ica.2009.10.009
- 6. Li-Juan T., Zhi-Hong M., Zhan-Gang H., Xue-Zhong Z., Jin L. Synthesis and crystal

- structures of cyclopentadienyl dimolybdenum carbonyl complexes. *Transition Met. Chem.*, 2011, **Vol. 36**, p. 151-156.
- https://doi.org/10.1016/j.ica.2009.10.009
- 7. Zhihong M., Na W., Kaiming G., Xuezhong Zg., Jin L. Reactions of substituted tetramethylcyclopentadienes with molybdenum hexacarbonyl. *Inorganica Chimica Acta*, 2013, Vol. 399, p. 126-130. https://doi.org/10.1007/s11243-010-9447-x
- 8. Loren B., Danny M., Casey S., Joseph M. Crystal structure of the tetramethyl(phenethyl)cyclopentadienylmolybdenumtricarbonyl dimer. *Acta Cryst. Section E*, 2018, V. 74, p. 1017-1020.
 - https://doi.org/10.1107/S2056989018008885
- 9. Yao-Cheng Sh. Syntheses and crystal structures of Dimolybdenum complexes containing P2 and functionalized Cyclopentadienyl ligands. *J. Coord. Chem.*, 2004, **Vol. 57**, p. 393–400. https://doi.org/10.1080/00958970410001689 076
- 10. Patricia N., Claudia C.L.P., Filipe A.A.P. Cyclopentadienyl molybdenum dicarbonyl η3-allyl complexes as catalyst precursors for olefin epoxidation. Crystal structures of Cp'Mo(CO)2(η3-C3H5) (Cp' = η5-C5H4Me, η5-C5Me5). *Journal of Organometallic Chemistry*, 2010, **Vol. 695**, p. 2311-2319.
- 11. Russell P.H., Jeffrey R.L., Arnold L.R., Glenn P.A. Molybdenum and

- tungsten complexes containing the 1,2-ditert-butylcyclopentadienyl ligand. *Journal of Organometallic Chemistry*, 1996, **Vol. 517**, p. 63-70. https://doi.org/10.1016/0022-328X(96)06115-3
- Ibrahimova N.Z., Tagiyev D.B., Lyatifov I.U., Akkurt M., Hasanov K.I., Bhattarai A. Crystal structure of bis[(η⁵-tert-butylcyclopentadienyl)tricarbonylmolybdenum(I)](Mo—Mo). *Acta Cryst.*, 2024, E80, p. 882-885. https://doi.org/10.1107/S205698902400695
- 13. Adams R.D., Collins D.M., Cotton F.A. Molecular Structures and Barriers to Internal Rotation in Bis(η⁵-cyclopentadienyl)hexacarbonylditungsten and Its Molybdenum Analog. *Inorganic Chemistry*, 1974, **Vol. 13** (5), p. 1086-1090. https://doi.org/10.1021/ic50135a015
- 14. Manning A.R., Hackett P., Birdwhistell P.R., Soye P. Hexacarbonylbis(η^5 -Cyclopentadienyl)Dichromium, Molybdenum, and Tungsten and their Analogs, $M_2(\eta^5-C_5H_4R)_2(CO)_6$ (M = Cr, Mo, and W; R = H, Me or PhCH₂). *lnorg. Synth.*, 1990, **Vol. 28**, p. 148-150. https://doi.org/10.1002/9780470132593.ch3
- 15. Ibrahimova N.Z. Features of crystal structures of symmetric polymethylferrocenes. *Chemical Problems*, 2020, **Vol. 18(2)**, p. 145-150. DOI 10.32737/2221-8688-2020-2-145-150

- Clegg W., Compton N.A., Errington R.J., Norman N.C. Structure of hexacarbonylbis(pentamethylcyclopentadie nyl)dimolybdenum (Mo-Mo). *Acta Cryst. Section C*, 1988, Vol. 44, p. 568-570. https://doi.org/10.1107/S010827018701158
- 17. Schwartz A.J., Pike R.D., Herber R.H., Watson E.J. Syntheses, Structures, and Mössbauer Effect Spectroscopy of Triple-Decker Complexes Incorporating Nonamethylferrocene. *Organometallics.*, 2016, **Vol. 35(1)**, p. 62-69. https://doi.org/10.1021/acs.organomet.5b00 913
- 18. Ibrahimova N.Z., Rustemova S.M., Jafarov G.M., Lyatifov I.U. F...H hydrogen bond in the crystal structure of symmetrical polymethylferricinium salts [(CH₃)nC₅H_{5-n}]2Fe⁺X⁻ (Me_nFc⁺X⁻, n = 6, 8, 10); X⁻ = PF₆⁻, BF₄⁻, Br₃⁻). *Chemical Prolems*, 2023, **Vol. 21**(3), p. 203-210. DOI 10.32737/2221-8688-2023-3-203-210
- 19. Makal A.M., Damian P., Janusz Z., Boguszaw M., Krzysztof W. Experimental Charge Density Analysis of Symmetrically Substituted Ferrocene Derivatives. *Inorg. Chem.*, 2010, **Vol. 49**, p. 4046-4059. https://doi.org/10.1021/ic9019958
- 20. Tables of Interatomic Distances and Configuration in Molecules and Ions. Supplement 1956–1959 (1965) Ed. Sutton LE, London: Chemical Society.