

DESIGN, SYNTHESIS, CHARACTERIZATION, AND ANTIBACTERIAL ACTIVITY OF SOME NEW MANNICH BASES FROM ACETYLENE ETHER

Maitham M. Abdulridha*, Moayd N. Mohammed

Department of Chemistry, College of Science AL-Qadisiyah University, Qadisiyah, Iraq. *e-mail: maitham.abdulreda@stu.edu.iq

Received 06.01.2025 Accepted 12.03.2025

Abstract. Some new Mannich bases 3a-3f were produced by the treatment of 4,4'-(phenylmethylene)bis((prop-2-yn-1-yloxy)benzene) 2a-2f with acetylene ether in the presence of formaldehyde in ethanol. The 4,4'-((phenylmethylene)bis(4,1-phenylene))bis(oxy))bis(N,N-diethylbut-2-yn-1-amine) (Mannich bases) demonstrated anticancer efficacy through docking with the C-met tyrosine kinase receptor protein, evidenced by docking scores ranging from -3.58 to -5.0 kcal/mol, in comparison to the control Crizotinib value of -6.86 kcal/mol. The new compounds were assessed for their in vitro antibacterial activity by using the agar cup method of Muller Hinton agar and tested against a series of bacteria (Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). The synthesized compounds exhibited significantly high activity against negative and positive bacteria. The study showed a good theoretical molecular docking result towards the C-met tyrosine kinase receptor protein close to crizotinib and displayed high inhibition as antibacterial activity.

Keywords: Antibacterial, Acetylene Ether, Design, Mannich Bases.

DOI: 10.32737/2221-8688-2025-4-580-591

Introduction

Since the discovery of acetylene, new areas of acetylene chemistry have been continuously developed. Coupling and addition reactions can exemplify the rich scope of chemical transformations available for a C≡C triple bond [1]. Removing trace acetylene from ethylene has led to another important process, selective hydrogenation of acetylene. Recently, several opportunities for controlled acetylene accommodation in microporous materials have appeared. New functional materials separate,

sense, and store acetylene and other small molecules [2].

The acetylene group has good biological activity and is an important source of intermediate pharmaceuticals for taking action for novel antibacterials [3]. The compound contains the acetylene group used for Parkinson's disease [4], such as inhibiting drugs. Acetylcholine gives an ether acetylene group in nucleosides, and the acetylene group, as shown in Fig. 1, creates medicines and dyes [5].

$$R_1$$
 R_2
 R_1
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_5
 R_6

Fig. 1. Structure of acetylene compounds

The Mannich reaction is an organic an acidic proton placed next to a carbonyl reaction that consists of an amino alkylation of functional group by formaldehyde and a primary

or secondary amine or ammonia. The final product is a β-amino-carbonyl compound [6], a Mannich base. Reactions between aldimines and α-methylene carbonyls are also considered Mannich reactions because these imines form between amines and aldehydes [7]. The reaction is named after chemist Carl Mannich. The Mannich reaction is an example of nucleophilic addition of an amine to a carbonyl group followed by dehydration to the Schiff base [8]. The Schiff base is an electrophile that reacts in the second step in an electrophilic addition with a compound containing an acidic proton (which is, or had become, an enol) [9]. The Mannich reaction is also considered a condensation reaction. Mannich base compounds are important for medicinal chemistry [10]. The most important and widely used aminoalkylation of CH-acidic compound is the Mannich reaction or alkaloids Mannich. The most active uses anticholinergic agents [11-14], hypertensive agents, CNS stimulant agents, antispasmodic agents, local anesthetics, and anticancer agents. Mannich-type reactions are among organic preparation's most important carbon-carbon bond-forming reactions [15]. They provide amino carbonyl compounds, important synthetic intermediates for various pharmaceuticals and natural products. They can be readily converted to derivatives with useful applications in paint

polymer chemistry, plant protection, medicine, and the pharmaceutical industry [16, 17]. A series of acetylenes containing bis(2chloroethyl)amine' functionalities synthesized by the Mannich reaction in good yields showed antitumor properties. The representative examples are biological applications, activities, antimicrobial, and anticancer therapeutic potential, with the highest antitumor activity [18]. Antimicrobial activity of Mannich bases. Antimicrobials are considered one of the most successful forms of therapy in medicine. However, their efficacy is adversely affected by antibiotic-resistant pathogens [19]. compounds were examined using the BHI (brain heart infusion) broth dilution method for antifungal activity against Candida albicans and Aspergillus niger, as shown in Fig. 2.

Crizotinib. sold under the brand name Xalkori, is an anti-cancer medication used treat non-small cell to lung carcinoma (NSCLC). Crizotinib inhibits the c-Met/Hepatocyte growth factor receptor (HGFR) tyrosine kinase, which involved in the oncogenesis of several other histological malignant neoplasms. It also acts as an ALK (anaplastic lymphoma kinase) and ROS1 (c-ros oncogene 1) inhibitor structure, as shown in Fig. 3.

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3

Fig. 2. Structure of Mannich base compounds

Fig 3. Chemical structure of Crizotinib

Experimental part

The chemicals and reagents were purchased from Merck and Aldrich. The spectra were obtained using various instruments, namely, Fourier-transform infrared spectroscopy (FT-IR), Perkin Elmer toner 27 (Bruker, resonance Germany), nuclear magnetic spectrometer (¹H-NMR, ¹³C-NMR) BioSpin GmbH 400,100 MHz (Bruker, Germany), and mass spectrometer U3500, mass selective detector (5973) (Agilent Technologies, USA).

Synthesis of Synthesis of 4,4'-(phenylmethylene)diphenol derivatives [1a-1f]. In the round-bottom flask, phenols (1.88 gm, 0.02 moles) were dissolved in 20 ml of glacial acetic acid. Then, a different aromatic aldehyde (0.01 mole) 40% was added to the mixture at 0 to

5 °C, (2:1) ratio. The mixture was heated under reflux for 1 hrs. The reaction mixture was stirred cold for an additional three hours and was then stirred at room temperature 24 hr after the beginning of the reaction. It was poured into cold water; the precipitate was filtered off and neutralized with sodium bicarbonate solution and purified using the ethanol solvent 81-85.

1a; m.p. 88-90 °C, yield 79 %, Rf=0.84, dark violet color. **1b**; m.p. 80-83 °C, yield 78 %, Rf=0.92, dark brown color. **1c**; m.p. 84-89 °C, yield 82 %, Rf=0.66, medium walnut color. **1d**; m.p. 92-95 °C, yield 68 %, Rf=0.63, medium violet color. **1e**; m.p. 85-88 °C, yield 82%, Rf=0.62, dark pink color. **1f**; m.p. 86-90 °C, yield 73 %, Rf=0.67, brown color [20-22].

Scheme 1. Synthesis of Mannich bases compounds [3a-3f]

Synthesis of 4,4'- yloxy)benzene) [2a-2f]. The mixture of (phenylmethylene)bis((prop-2-yn-1- compounds [1a-1f] methylene derivatives

(0.01mole) in 25 ml of ethanol in a round-bottom flask and 10 gm of sodium hydroxide dissolved in 50 ml of D.W. The mixture was heated under reflux for 15 min. Then, propargyl bromide (2.4 ml and 0.02 mole) was added. The mixture was sublimated using a reflective condenser for 3 hours at temperatures of 60-70, then cooled at room temperature and poured into 10 ml of cold water. The organic layer was extracted twice using benzene then the material was left to dry in an oven for two hours at a temperature of 50 °C

to get rid of the solvent [23-24]. The solvent was evaporated gently under a moderate temperature till forming the precipitate. **2a**; m.p. 80-83 °C, yield 67 %, Rf=0.63, pink color. **2b**; m.p. 80-83 °C, yield 78 %, Rf= 0.92, color dark brown. **2c**; m.p. 72-76 °C, yield 80 %, Rf=0.62, light violet color. **2d**; m.p. 76-79 °C, yield 82 %, Rf=0.65, beige. **2e**; m.p. 60-62 °C, yield 80%, Rf=0.61, pastel pink color. **2f**; m.p. 66-70 °C, yield 72 %, Rf=0.83, color light beige.

Scheme 2. The reaction mechanism of the synthesized compounds [3a-3f]

Synthesis of 4,4'-(((phenylmethylene)bis (4,1-phenylene))bis (0xy))bis(N,N-diethy lbut-2-yn-1-amine) (Mannich bases) [3a-3f]. In a round bottom flask, a mixture of (1.2 g, 0.002)

mole) of compound [2a-2f] and (0.002 ml, 0.02 mole) of acetylene ether derivatives was dissolved with (0.01) formaldehyde in (50) ethanol, Then (0.02mole) of the secondary amine

diethyl amine was added. The resultant mixture was heated under reflux for 3 hrs at (70 °C), in the presence of (0.098 g, 0.001 mole) cuprous chloride as catalyst. The reaction was monitored by TLC using eluent (3:7) hexan:ethyl acetate. The solvent was concentrated. The mixture was allowed to cool and then poured onto crushed ice with a scratching 90-94. The resulting solid was filtered off and recrystallized from ethanol to

remove the cuprous chloride [26-29]. **3a**; m.p. 78-82 °C, yield 73 %, Rf=0.85, color pink. **3b**; m.p 80-86 °C, yield 72 %, Rf=0.82, color light green. **3c**; m.p. 74-79 °C, yield 74 %, Rf=0.84, color light pink. **3d**; m.p. 86-88 °C, yield 73 %, Rf=0.84, light beige. **3e**; m.p. 82-86 °C, yield 73%, Rf=0.92, color light pink. **3f**; m.p 82-88 °C, yield 81 %, Rf=0.88, color light brown (Schemes 1 and 2).

Results and discussion

The FT-IR spectrum of [3a] showed an appearance absorption band at 3057, 2948 cm⁻¹ due to stretching vibration of C-H aromatic, Ali C-H respectively (Fig. 3).

The 1 H-NMR spectrum of compounds [**3a**] showed at δ 7.65 (m, 2H), 7.16 (m, ArH, 4H), 6.74 (m, ArH,4H), 5.00 (s, CH, 1H), 4.49 (s, J = 13.8 Hz, CH₂, 4H), 3.83 (s, CH₂, 4H), 3.12 (s, CH₂, 4H), 2.17 – 1.84 (q, CH₂,8H),1.36 – 0.51 (t, CH₃, 12H) (Fig. 4).

The ¹³C-NMR spectrum of compounds [**3a**] showed at δ 154.07, 140.31, 133.44, 131.08, 130.52, 124.73, 123.40, 121.51 carbon of aromatic ring, 79.34, 62.07 carbon of acetylene,58.47 carbon of CH₂-O, 55.58 carbon of CH, 51.75 carbon of CH₂-CH₃, 40.44 carbon of (CH₃-N-CH₃), 35.22 carbon of CH₂-N, 14.34 carbon of CH₃ (Fig. 5).

The FT-IR spectrum of [**3b**] showed an appearance absorption band at 3113, 2978 cm⁻¹ due to stretching vibration of C-H aromatic, Ali C-H respectively [30-33].

The 1 H-NMR spectrum of compounds [**3b**] showed at δ 7.34 (m, ArH, 2H), 7.17 (m, ArH, 2H), 6.93 (J = 9.6 Hz, m, ArH, 4H), 6.46 (m, ArH, 4H), 5.01 (s, CH, 1H), 3.90 (CH₂, 4H), 3.45 (s, CH₂, 4H), 2.18 (q, CH₂, 8H), 1.09 – 0.88 (t, CH₃, 12H).

The ¹³C-NMR spectrum of compounds [**3b**] showed at δ 176.74, 162.23, 152.25, 151.97, 128.86, 124.65, 116.14, 115.57 carbon of aromatic ring, 73.21, 71.96 carbon of acetylene, 55.98 carbon of CH₂-O, 63.74 carbon of CH, 58.26 carbon of CH₂-CH₃, 44.29 carbon of CH₂-N, 22.18 carbon of CH₃.

The FT-IR spectrum of [3c] showed an appearance absorption band at 3057 2968 cm⁻¹ due to stretching vibration of C-H aromatic Ali C-H respectively.

The ¹H-NMR spectrum of compounds [3c]

showed at δ 7.70 (m, J = 77.2 Hz ArH, 2H), 7.42 (m, ArH, 2H), 7.28 (m, J = 25.4 Hz, m, ArH, 2H), 6.80 (m, J = 50.8 Hz, m, ArH, 4H), 6.63 – 6.37 (m, ArH, 2H), 5.24 (s, CH, 1H), 4.94 (s, CH₂, 4H), 3.55 (s, 4H), 2.29 (d, J = 17.3 Hz, 8H), 1.62 – 0.69 (m, CH₃, 12H) [33-37].

The FT-IR spectrum of [**3d**] showed an appearance absorption band at 3034, 2964 cm⁻¹ due to stretching vibration of C-H aromatic Ali C-H respectively.

The ¹H-NMR spectrum of compounds [3d] showed at δ 9.49 (s, OH, 1H), 7.91 (m, ArH, 1H), 7.40 (m, J = 29.2 Hz, ArH, 2H), 7.28 (m, ArH, 2H), 6.86 (m, ArH, 2H), 6.67 (m, J = 19.3 Hz, ArH, 4H), 5.32 (s, CH, 1H), 4.65 (s, CH₂, 4H), 3.90 (s, CH₃, 3H), 3.70 (s, CH₂, 4H), 2.44 – 1.43 (q, CH₂, 8H), 1.56 –0.37 (t, CH₃, 12H).

The¹³C-NMR spectrum of compounds [**3d**] showed at δ 152.04, 149.43, 139.74, 136.96, 127.14, 123.97, 111.92, 109.47 carbon of aromatic ring, 84.05, 77.12 carbon of acetylene, 55.66 carbon of CH₂-CH₃, 46.37 carbon of CH₂-O, 50.66 carbon of CH₂-N, 17.04 carbon of CH₃.

The FT-IR spectrum of [3e] showed an appearance absorption band at 3030, 2993 cm⁻¹ due to stretching vibration of C-H aromatic Ali C-H respectively.

The ¹H-NMR spectrum of compounds [**3e**] showed at δ 9.34 (s, OH, 1H), 8.11 (m, ArH, 2H), 7.07 (m, ArH, 3H), 7.05 (m, ArH, 3H), 6.88 (m, ArH, 2H), 6.78 (m, ArH, 2H), (s, 12H), 5.27 (s, CH, 1H), 4.71 (s, CH₂, 4H), 3.51(s, CH₂, 4H), 2.6 (q, CH₂, 8H), 0.95 (t, CH₃, 12H).

The 13 C-NMR spectrum of compounds [**3e**] showed at δ 164.96, 158.36, 142.63, 142.61, 137.32, 131.30, 130.90, 124.73, 123.40, 121.51 carbon of aromatic ring, 78.93, 70.63 carbon of acetylene, 61.58 carbon of H, 58.62 carbon of

CH₂-O, 44.26 carbon of CH₂-CH₃, 39.65 carbon of CH₂-N, 14.43 carbon of CH₃.

The FT-IR spectrum of [**3f**] showed an appearance absorption band at 3050 2981cm⁻¹ due to stretching vibration of C-H aromatic Ali C-H respectively.

The ¹H-NMR spectrum of compounds [**3f**] showed at δ 8.51 (m, ArH, 2H), 8.46 (m, ArH, 3H), 7.50-7.57 (m, ArH, 3H), 7.28 (m, ArH, 2H), 7.20 (m, ArH, 2H), (s,12H), 5.44 (s, CH, 1H), 4.88 (s, CH₂, 4H), 3.69(s, CH₂, 4H), 2.96 (q, CH₂, 8H), 2.41 (s, CH₃, 3H). 1.35 (t, CH₃, 12H).

The 13 C-NMR spectrum of compounds [3f] showed at δ 161.26, 152.04, 150.73, 128.50, 123.50, 111.76, 108.77 carbon of aromatic ring, 86.08, 81.14 carbon of acetylene, 56.09 carbon of

CH, 55.86 carbon of CH₂-O, 53.90 carbon of CH₂-CH₃, 50.76 carbon of CH₃-O, 45. 83 carbon of CH₂-N 14.26 carbon of CH₃.

The ¹H-NMR spectrum of compounds [**3g**] δ 8.51 (m, ArH, 2H), 8.46 (m, ArH, 3H), 7.50-7.57 (m, ArH, 3H),7.28 (m, ArH, 2H), 7.20 (m, ArH, 2H), (s,12H), 5.44 (s, CH,1H), 4.88 (s, CH₂, 4H), 3.69(s, CH₂, 4H), 2.96 (q, CH₂, 8H), 2.41 (s, CH₃, 3H), 1.35 (t, CH₃, 12H).

The ¹H-NMR spectrum of compounds [**3h**] δ 7.42 (m, ArH, 4H), 7.31 (m, ArH, 1H), 7.25-7.16 (m, ArH, 2H), 6.64 (m, ArH, 4H), 5.29 (s, CH, 1H), 4.21 (s, CH₂, 4H), 3.23 (s, CH₂, 3H), 3.22 (s, CH₂, 3H), 3.13 (s, CH₂, 4H), 2.07 (q, CH₂, 8H), 0.81 (t, CH₃, 12H) [38-41].

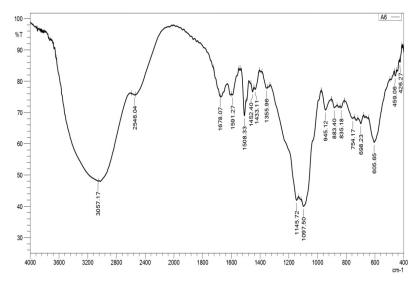


Fig. 3. FT-IR Spectrum of [3a]

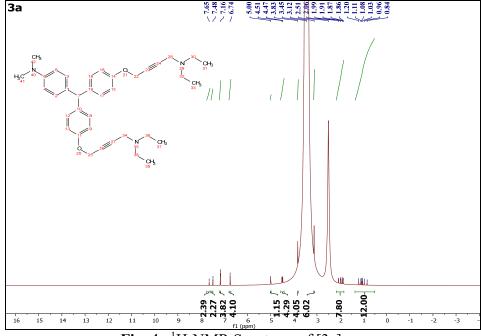


Fig. 4. ¹H-NMR Spectrum of [3a]

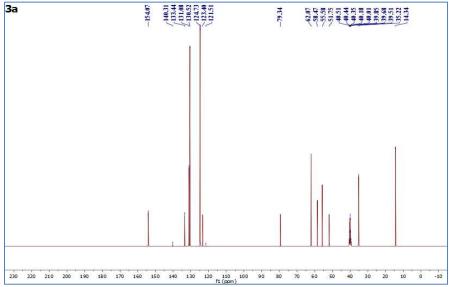
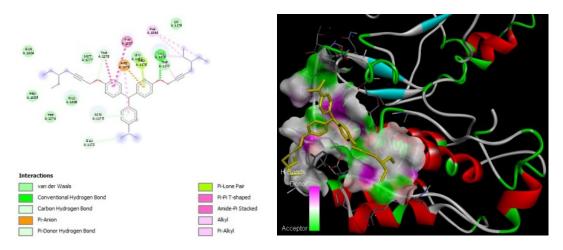


Fig. 5. ¹³C-NMR Spectrum of [3a]


Molecular docking study. Traditional chemotherapy uses anticancer drugs to destroy rapidly dividing cancer cells throughout the body. Since cytotoxic anticancer drugs cannot distinguish between cancer cells and naturally rapidly dividing normal cells in the body, they may cause one or more of the following side effects. Targeted anticancer drugs specifically to cancer cells, resulting in fewer adverse effects than cytotoxic drugs that aim to target molecules proteins selectively or implicated in the proliferation and metastasis of cancer cells. Molecular docking plays an increasingly important part in the targeted drug discovery and development process since it saves

time, cost, and research effort and reduces side effects of anticancer drugs. Molecular docking is becoming a more essential method for drug development. Its primary goals are to estimate ligand-protein affinity and to achieve a ligand-receptor complex with an optimal conformation and lower binding free energy. As the molecular docking study shows, the newly synthesized compounds exhibited an anti-cancer effect.

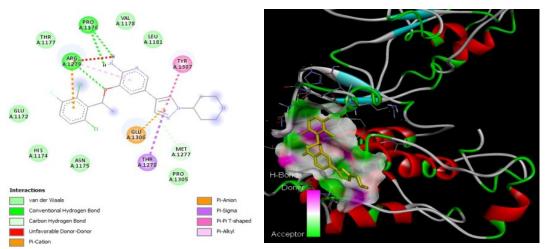

The anticancer effects of these compounds are on the C-Met tyrosine kinase receptor [42-44], with varied scores. Their docking scores range from -3.95 to -5.00 kcal/mol, whereas Crizotinib binding affinity is -6.86 kcal/mol.

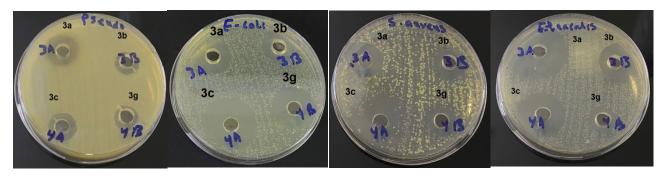
Table 1. Results of molecular interaction between C-met tyrosine inhibitor compounds (3a-3f)

NO.	Docking score on ER-(Kcal/mol)			
3a	-4.42			
3b	-5.00			
3c	-4.66			
3d	-3.95			
3e	-4.46			
3f	-4.29			
3g	-4.27			
Crizotinib	-6.86			

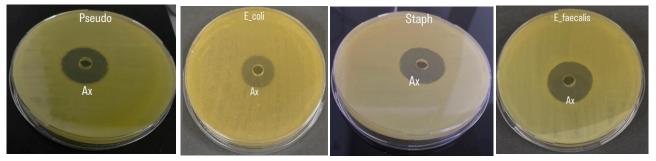
Fig. 6. 2D and 3D dimensional representations of molecular interactions between C-met tyrosine inhibitor and (3a) compound

Fig.7. D2 and D3 dimensional representations of molecular interactions between C-met tyrosine inhibitor and (Crizotinib) compound

Table 2. Diameter of the inhibition zone in *mm* of the antibacterial activity of compounds (3a-3g and Amoxicillin)


Comp. Symbol	Conc. (µg/ml)	Gram-positive		Gram-negative	
		Enterococcus faecalis	Staphylococcus aureus	Escherichia coli	Pseudomonas aeruginosa
3a	100	20	15	12	14
3b	100	25	18	17	21
3c	100	24	14	13	24
3g	100	21	17	24	81
Amoxicillin	100	19	20	16	18

Antibacterial activity of synthesized compounds. The antibacterial activity of newly synthesized compounds (3a, 3b, 3c, 3g, and Amoxicillin) was assessed *in vitro* using the Muller-Hinton agar cup method. The compounds


were examined, the plates were incubated for 24 hrs at 37 °C, and the inhibitory zone was recorded in *mm*. The chemicals' biological effects on a series of bacteria [Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, and

Pseudomonas aeruginosa], respectively, displayed high inhibition as shown in the following Table 2 and Fig. 8. The synthesized

compounds (3a, 3b, 3c, 3g, and Amoxicillin) showed high activity against negative and positive bacteria [45-47].

Fig. 8. Mean zone of inhibition (*mm*) of 3a, 3b, 3c, and 3g compounds against *Enterococcus faecalis*, *Staphylococcus aureus*, *E. coli and Pseudomonas aeruginosa* on Muller-Hinton agar.

Fig. 9. Mean zone of inhibition (*mm*) of Amoxicillin against Enterococcus faecalis, Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa on Muller-Hinton agar

Conclusion

This study involved the synthesis of seven new Mannich-base derivatives. The synthesized compounds were confirmed by some spectral methods such as FTIR, ¹H-NMR, and ¹³C-NMR. The newly synthesized compounds exhibited an anticancer effect when docked with the C-Met tyrosine kinase receptor, as shown by their docking scores ranging from -3.95 to -5.0

kcal/mol. In contrast, Crizotinib binding affinity is -6.86 kcal/mol for antibacterial efficiency. The synthesized compounds have exhibited high activity against negative and positive bacteria [Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa], respectively, better than Amoxicillin.

Acknowledgments

This study was supported by the College of Seine, AL-Qadisiyah University, Ministry of Higher Education and Scientific Research, Iraq.

References

- 1. Xuan J., Studer A. Radical cascade cyclization of 1, n-enynes and diynes for synthesizing carbocycles and heterocycles. *Chem. Soc. Rev.* 2017, **Vol. 46(14)**, p. 4329-4346. DOI: 10.1039/C6CS00912C
- 2. Aguilar E., Sanz R., Fernandez-Rodriguez M.A., Garcia-Garcia P. 1, 3-Dien-5-ynes: versatile building blocks for synthesizing
- carbo-and heterocycles. *Chem. Soc. Rev.* 2016, **Vol. 116(14)**, p. 8256-8311. DOI:10.1021/acs.chemrev.6b00181.
- 3. Al-Hazmi G.H. Synthesis, spectroscopic characterizations, and cytotoxic activities of some novel 1, 2-bis-(tetrasubstituted-benzylidene) hydrazine analogs. *Bull. Chem.*

- Soc. Ethiop. 2023, Vol. 37(6), p. 1503-1520. DOI:10.4314/bcse.v37i6.16
- Kamel M.M., Abdo N.Y.M. Synthesis of Novel 1, 2, 4-Triazoles, TriazolothiadiazinesAnd Triazolothiadiazoles As Potential Anticancer Agents. *European Journal of Medicinal Chemistry*, 2014, Vol. 86 (3), p. 75-80. DOI: 10.1016/j.ejmech.2014.08.047
- 5. Khalid D., Mohamed Sh.R., Mz Al-Niami N. Synthesis of Some Substituted 1, 3, 4-Oxadiazoles, 1, 3, 4-Thiadiazoles And 1, 2,4-Triazoles From 2-(2, 3-DimethylphenylAmino) Benzoic Acid. *Journal of Education and Science*, 2009, Vol. 22(3), p. 1-10. DOI:10.33899/edusj.2009.57764
- 6. Aday H.A. Synthesis and Characterization of The Triazole Derived From Thiosemicarbazide, 4-Amino-5-Phenyl-4h-1,2, 4-Triazole-3-Thiol And Their Copper (II) And Nickel (Ii) Complexes. *Engineering And Technology Journal*, 2013, **Vol. 31(2)**, p. 216-221. DOI: 10.30684/etj.31.2b.8
- 7. Dalal M.J., Athraa H.M. Synthesis, Characterization And Antioxidant Evaluation Of Some Tetrazole Derivatives. *Indonesian Journal of Chemistry*, 2022, **Vol. 22(6)**, p. 1596-1604. DOI: 10.22146/ijc.74912
- 8. Zhou H.C., Wang Y. Recent research in triazole compounds as medicinal drugs. *Current medicinal chemistry*, 2012, **Vol. 19(2)**, p. 239-280. DOI: 10.2174/092986712803414213
- 9. Kharb R., Chander S.P., Yar M.S. Pharmacological significance of triazole scaffold. *Journal of enzyme inhibition and medicinal chemistry*, 2011, Vol. 26(1), p. 1-21. DOI: 10.3109/14756360903524304
- Juríček M., Kouwer P.H.J, Rowan A.E. Triazole: a unique building block for the construction of functional materials. *Chemical communications*, 2011, Vol. 47(31), p. 8740-8749. DOI: 10.1039/C1CC10685F
- 11. Zhang S., Xu Z., Gao Ch., Ren Q.-Ch., Chang L., Lv Z.-Sh., Feng L.-Sh. Triazole derivatives and their antitubercular activity. *European Journal of Medicinal Chemistry*, 2017, Vol. 138(2), p. 501-513. DOI: 10.1016/j.ejmech.2017.06.051

- 12. Saravolatz L.D., Johnson L.B., Kauffman C.A. Voriconazole: a new triazole antifungal agent. *Clinical infectious diseases*, 2003, **Vol. 36(5)**, p. 630-637. DOI: 10.1086/367933
- Kaplancikli Z.A., Turan-Zitouni G., Özdemir A., Revial G. New triazole and triazolothiadiazine derivatives as possible antimicrobial agents. *European Journal of medicinal chemistry*, 2008, Vol. 43(1), p.155-159. DOI: 10.1016/j.ejmech.2007.03.019
- 14. Torres H.A., Hachem R.Y., Chemaly R.F., Kontoyiannis D.P., Raad I.I. Posaconazole: a broadspectrum triazole antifungal. The Lancet infectious diseases, 2005, Vol. 5(12), p. 775-785. DOI: 10.1016/S1473-3099(05)70297-8
- 15. Thapa P., Upadhyay S.P., Suo W.Z., Singh V., Gurung P., Lee E.S., Sharma R., Sharma M. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer's disease. *Bioorg. Chem.* 2021, **Vol. 108**, p. 104681.

 DOI:10.1016/j.bioorg.2021.10468125.
- 16. Ouyang Y., Li J., Chen X., Fu X., Sun S., Wu Q. Chalcone derivatives: Role in anticancer therapy. *Biomolecules*. 2021, **Vol. 11(7)**, p. 894. DOI:10.3390/biom11060894.
- 17. Salehi B., Quispe C., Chamkhi I., El Omari N., Balahbib A., Sharifi-Rad J., Bouyahya A., Akram M., Iqbal M., Docea A.O., Caruntu C., Leyva-Gómez G., Dey A., Martorell M., Calina D., López V., Les F. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinicalevidence. *Front. Pharmacol.* 2021, Vol. 11(4), p. 592654. DOI:10.3389/fphar.2020.592654.
- 18. Sharma H., Patil Sh., Sanchez T.W., Neamati N., Schinazi R.F., Buolamwini J.K. Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors. *Bioorganic & Medicinal Chemistry*, 2011, **Vol. 19(2)**, p. 2030-2045. DOI: 10.1016/j.bmc.2011.01.047.
- 19. Elkanz N.A.A., Hrichi H., Alolayan R.A., Derafa W., Zahou Fatin M., Bakr R.B. Synthesis of Chalcones Derivatives and Their Biological Activities, A Review. *ACS*

- *Omega*, 2022, **Vol. 32(7)**, p. 27769–27786. DOI: 10.1021/acsomega.2c01779.
- Marotta L., Rossi S., Ibba R., Brogi S., Calderone V., Butini S., Campiani G., Gemm S. The green chemistry of chalcones: Valuable sources of privileged core structures for drug discovery. *Front. Chem.* 2022, Vol. 10(1), p. 1-22. DOI: 10.3389/fchem.2022.988376
- 21. Akbari P.M., Shah V.R. Synthesis, Characterization and Biological Evaluation of Ethyl-4'-(cyclopropane carboxamides-Nyl)-5-ary-3-oxo-3,4,5,6- tetrahydro biphenyl-4-carboxylate. *Asian Journal of Organic & Medicinal Chemistry*, 2019, **Vol. 4(4)**, p. 240–243 DOI: 10.14233/ajomc.2019.
- 22. Mezgebe K., Melaku Y., Mulugeta E. Synthesis and Pharmacological Activities of Chalcone and Its Derivatives Bearing N-Heterocyclic Scaffolds: A Review. *ACS Omega*, 2023, **Vol. 8(1)**, p. 19194–19211. DOI: 10.1021/acsomega.3c01035 ACS.
- 23. Hatem K.J., Mohammed M.N. Synthesis of some new thioimidazolidine compound derivatives from benzil. *AIP Conference Proceedings*, 2023, **Vol. 2834(1)**, 030009. DOI: 10.1063/5.0164892
- 24. Abrahim T., Mohammed M.N. Synthesis and Biological of new Oxazepine-4, 7-dione of pyrazine. *Journal of Physics: Conference Series*, 2019, **Vol. 1294(5)**, 052074. DOI: 10.1088/1742-6596/1294/5/052074
- 25. Mohammed M.N., Mohammed T.I., Al-Saidi A.A.S. Synthesis and biological evaluation of some amides compound derivative of oxazole carboxylic acids. *International Journal of Research in Pharmaceutical Sciences*, 2019, Vol. 10(1), p. 537–539.
- 26. Mekky A.H., Hamed F.M., Hassan B.A. Synthesis, Characterization, Molecular Docking Studies and Pharmaceutical Evaluation of Some Novel [1,2,4]Triazolo[3,4-B][1,3,4]Thiadiazole. *Jurnal Kimia Valensi*, 2024, Vol. 10(2), p. 304–314. DOI: 10.15408/jkv.v10i2.40043
- 27. Hassan B.A., Mekky A.H. Synthesis, molecular docking, and anticancer study of some new [1,2,4] triazolo[4,3-b][1,2,4,5]tetrazines. *Indian Journal of Heterocyclic Chemistry*, 2024, **Vol. 34(3)**, p. 391–398. DOI: 10.59467/ijhc.2024.34.391

- 28. Hassan B.A., Mekky A.H. Synthesis, characterization and antibacterial activity of [1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine derivatives. *Chemical Problems*, 2025, **Vol.** 23(1), p. 78–94. DOI: 10.32737/2221-8688-2025-1-78-94
- 29. Ibrahimova N.Z., Tagiyev D.B., Jafarov G.M., Lyatifov I.U. Effect of vicinal tert-butyl groups on the crystal structure of the unsubstituted cp2mo2 (co) 6 dimer complex of molybdenum. *Chemical Problems*, 2025, **Vol.** 23(2), p. 151-158. DOI: 10.32737/2221-8688-2025-2-151-158
- 30. Farzaliyev V.M., Babai R.M., Mammadova R.F., Guliyeva G.M., Eyvazova G.S. Synthesis of 3-piperidine-2-hydroxypropylisobutyl ether and study of its anti-rust properties. *Chemical Problems*, 2025, **Vol. 23(2)**, p. 249-255. DOI: 10.32737/2221-8688-2025-2-249-255
- 31. Hassan B.A., Fadil M.H. Synthesis And Pharmaceutical Activity Of Triazole Schiff Bases with theoretical characterization. *Chemical Problems*. 2024, Vol. 22(3), p. 332-341. DOI: 10.32737/2221-8688-2024-3-332-341
- 32. Hassan B.A., Abdulridha M.M., Hamed F.M. Design and antibacterial activity of 3,6-diphenyl-1,5,6,7,8,8a-hexahydro[1,2,4]triazolo[4,3-b][1,2,4,5] tetrazine as fused heterocyclic compounds. *Biochemical and Cellular Archives*, 2020, **Vol. 20(1)**, p. 1499–1502. DOI: 10.26452/JJRPS.V10I2.417
- 33. Hassan B.A., Baqer F.M., Abdulridha M.M. Design, synthesis and characterization of benzoxazepine thiourea new derivatives. *International Journal of Drug Delivery Technology*, 2021, **Vol. 11(3)**, p. 874–876. DOI: 10.25258/ijddt.11.3.37
- 34. Abass A.A., Muhsin S.N., Hasan S.A., Hassan B.A. Efficacy study of Captopril on some liver function tests in hypertensive patients Estudio de eficacia de Captopril en algunas pruebas de función hepática en pacientes hipertensos. *Revista Latinoamericana de Hipertension*, 2023, **Vol. 18(3)**, p. 142–146. DOI: 10.5281/zenodo.8052329
- 35. Shalaal S.H., Halail A.T., Hamed F.M., Hassan B.A. Maceration techniques extraction of Thymus vulgaris and laurel

- (Laurus nobilis) leaves with antibacterial study. *Plant Archives*, 2019, **Vol. 19(2)**, p. 4041–4044. DOI: 10.13140/RG.2.2.32388.55688
- 36. Abdulridha M.M., Hassan B.A., Hamed F.M., Synthesis and antibacterial evaluation of 1,3,4-thiadiazole containing 1,3,4-oxadiazole bearing Schiff bases. *International Journal of Pharmaceutical Research*, 2018, **Vol. 10(4)**, p. 380–388.
- 37. Abdulridha M.M., Abdulhussein H.S., Alyaseen F.F., Hassan B.A. Phytochemical and antibacterial activity of the pegnum harmalaseeds and its alkaloids. *Plant Archives*, 2019, **Vol. 19(1)**, p. 1439–1444.
- 38. Hassan B.A., Naser H.N., Abdulridha M. Synthesis and antimicrobial evaluation of fused heterocyclic compound [1,2,4] triazolo [4,3-b][1,2,4,5] tetra zine. *International Journal of Research in Pharmaceutical Sciences*, 2019, **Vol. 10(2)**, p. 1254–1258. DOI: 10.26452/JJRPS.V10I2.417
- 39. Hassan B.A., Hamed F.M., Alyaseen F.F. Phytochemical screened, characterization and antibacterial activity of hesperetin and hesperidin extracted and isolated from dried oranges peels. *International Journal of Research in Pharmaceutical Sciences*, 2018, Vol. 9(4), p. 1362–1367.
- 40. Alyaseen F.F., Hassan B.A., Abdulhussein H.S. Extraction, isolation and chemical identification of piperine alkaloid from black pepper seeds and its antibacterial activity. *Plant Archives*, 2018, **Vol. 18(2)**, p. 2171–2176.
- 41. Hamed F.M., Hassan B.A., Abdulridha M.M. The antitumor activity of sulfonamides derivatives: Review. *International Journal of Pharmaceutical Research*, 2020, **Vol. 12(5)**, p. 2512–2519. DOI:

- 10.31838/ijpr/2020.SP1.390
- 42. Mousa H., Abd Al-Amir T. Bacterial Urinary Tract Infections Among Pregnant Women In Nasiriya City, Iraq. *University Of Thi-Qar Journal Of Science*, 2023, **Vol. 10(1)**, p. 117-121. DOI: 10.32792/utq/utjsci/v10i1.1039
- 43. Al-Hilali R.M., Al-Mozan H.D.K. Isolation and Identification of Negative Bacteria That Cause Diarrhea. *University Of Thi-Qar Journal of Science*, 2023, Vol. 10(2), p. 175-180. DOI: 10.32792/utq/utjsci/v10i1.1059
- 44. Musa M. The Prevalence and The Significance of The Pulmonary Bacterial Super-Infections Among Hospitalized Covid-19 Patients: A Scoping Review. *University Of Thi-Qar Journal of Science*, 2023, Vol. 10(1), p. 66-72. DOI: 10.32792/utg/utjsci/v10i1.930
- 45. Kleef D.G., Hussein K.R. Isolation Of Bacterial Causative Agents For Diabetic Foot Patients And Antibiotic Susceptibility Test Against Bacterial Isolates. *University Of Thi-Qar Journal Of Science*, 2023, Vol. 10(1), p. 201-204. DOI: 10.32792/utq/utjsci/v10i1(SI).1032
- 46. Hanan Z.K., Saleh M.B., Mezal E.H. Antimicrobial Resistance Pattern And Plasmid Profile Of Salmonella Enterica Isolated From Diarrheal Children In Thi-Qar Province/Iraq. *University Of Thi-Qar Journal Of Science*, 2020, Vol. 7(1), p. 49-53. DOI: 10.32792/utq/utjsci/v7i2.711
- 47. Pricopie A.I., Focșan M., Ionuț I., Marc G., Vlase L., Găină L.I., Vodnar D.C., Elemer S., Barta G., Pîrnău A., Oniga O. Novel 2, 4-Disubstituted-1, 3-Thiazole Derivatives: Synthesis, Anti-Candida Activity Evaluation And Interaction with Bovine Serum Albumine. *Molecules*. 2020, Vol. 25(5), 1079. DOI: 10.3390/molecules25051079