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Abstract: Some problems of ligand substitution reactions in non-regular condensed systems are considered 
in this work. One of the aspects of theoretical research is the study of the properties of individual particles, 
taking into account the nano-dimension of the molecules of the condensed system surrounding the particle. 
Two main mechanisms of influence on ligand particles from the medium, solvation and fluctuation, are 

distinguished. In numerical calculations of ligand substitution reactions, it is convenient to separate the 
reorganization of the reagent molecules and the reorganization of the medium during the process. Analytical 
expressions for the kinetic parameters of a wide class of reactions were obtained. 
Keywords: ligand substitution, condensed systems, spatial and frequency dispersion, solvation, impurity 
particles, Green functions, electron-nonadiabatic charge transfer, electron-adiabatic process. 

 

Introduction 

 

The modern theory of kinetics of charge transfer processes in nonregular condensed systems 

allows us to obtain analytical expressions for kinetic parameters of a wide class of reactions. When 

describing specific processes [1-7], it is very important to choose a system model that will consider 

the nature of the chemical reaction, describe the specific properties of the reacting particles, and 

take into account the effects of spatial and frequency dispersion of the medium. 

To describe a condensed medium, it is convenient to use the apparatus of Green's functions of 

medium polarization operators, which allows one to take into account the effects of frequency and 

spatial dispersion. When describing reacting particles, it is necessary to take into account the 

possibility of their polarized and solvated state. To describe intramolecular oscillations of reagents, 

as a rule, it is sufficient to use the harmonic approximation, which works effectively for high-

frequency oscillations. To take into account possible effects of anharmonicity of intramolecular 

vibrations of reagents, it is sufficient to use the Morse potential [8]. In this case, the parameters of 

this potential can be determined both by spectroscopic measurements and by thermodynamic data 

on the dissociation energy of a given chemical bond. Stronger effects of anharmonicity can be 

observed for deformation vibrations of reagents. To describe such effects, it is convenient to use the 

modified Poeschl-Teller potential [9]. 

The interaction of reacting particles with the medium is represented as the sum of two 

interactions: the interaction of fluctuations in the polarization of the medium with the static 

(Coulomb and dipole) field of the reacting particles and the interaction of fluctuations in the 

polarization of the medium with intramolecular vibrations of the reacting particles. 

Probability of an elementary act of an electron-nonadiabatic charge transfer process. To 

calculate the probability of an elementary act of the electron-nonadiabatic charge transfer process, 

we use the results of the multichannel collision theory, within which the Hamiltonian of the system 

𝐻 is represented as the sum of the initial 𝐻𝑖  and final 𝐻𝑓  states and the channel interaction, 

respectively, the initial 𝑉𝑖   or final 𝑉𝑓  channels:   

  

𝐻 = 𝐻𝑖 + 𝑉𝑖 =  𝐻𝑓 + 𝑉𝑓                                                                                                   (1) 
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In the first order of perturbation theory with respect to the channel interaction of the initial 

channel, the expression for the probability of the system transition from the initial state 𝑖 to the final 

state 𝑓 can be used 

 

𝑊𝑓𝑖 =
2𝜋

ħ
∑ 𝑒𝛽(𝐹𝑖−𝐸𝑖𝑛)

𝑛,𝑛′ |⟨𝛹𝑖 |𝑉𝑖|𝛹𝑓 ⟩|
2
𝛿(𝐸𝑖𝑛 − 𝐸𝑓𝑛′)𝑖

;         𝛽 =
1

𝑘𝑇
                              (2) 

 

where 𝐸𝑖𝑛 and 𝛹𝑖  are the eigenvalues and eigenfunctions of the Hamiltonian of the initial state 𝐻𝑖; 𝑛 

is the index of the oscillatory state of the system in the initial state; similarly, 𝐸𝑓𝑛, 𝛹𝑓  and 𝑛′ are for 

the final state. 𝐹𝑖  is the free energy of the system in the initial state. 

For a-particle reaction, from formula (2) one can obtain for the rate constant 

 

𝐾𝑎 = 𝑉𝑎−1𝑊𝑓𝑖
1

𝑖𝑘𝑇
𝑒𝛽𝐹𝑖𝑎 ∫ 𝑑𝜃𝑆𝑝[𝑒−𝛽(1−𝜃)𝐻𝑖𝑉𝑖𝑒

−𝛽𝜃𝐻𝑓𝑉𝑖
𝑓
]

𝑖∞

−𝑖∞
                                           (3) 

 

In this formula, the trace is assumed by all coordinates except for the electron coordinates of 

the reacting particles, 𝑉 is the volume of the system, 𝐹𝑖𝑎  is the free energy of the system ( 𝑎-

reagents and the medium) in the initial state, and 𝐻𝑓  is the Hamiltonian of the system in the final 

state. 

After simple transformations, we obtain for the rate constant a-partial reaction: 

 

𝐾𝑎 = 
1

𝑖𝑘𝑇𝑉
𝑒𝛽Ƒ𝑖 ∫ 𝑑𝜃𝑆𝑝[𝑒−𝛽(1−𝜃)𝐻𝑖𝑉𝑖𝑒

−𝛽𝜃𝐻𝑓𝑉𝑖
𝑓
]

𝑖∞

−𝑖∞
                                                             (4) 

                              

In the last formula, Ƒ𝑖  is the free energy of the system, independent of the volume of the system: 

 

Ƒ𝑖 = 𝐹𝑖𝑎 + 𝑎𝑘𝑇𝑙𝑛𝑉  

 

Further calculations of the rate constant of the charge transfer process are possible for specific 

processes within specific models. In this case, from the general expression for the rate constant of 

the process, calculations of the trace should be carried out for specific coordinates of a particular 

process. It should be taken into account that the coordinates can describe both classical processes 

and quantum ones - depending on the frequencies of the corresponding processes. 

For the substitution reaction of ligands in linear complexes, the following expressions can be 

used: 

 

𝐴𝐵 + 𝐶− → 𝐴𝐶 + 𝐵−                                                                                                            (5) 

 

Where 𝐴 = 𝐶𝐻3𝐻𝑔 and 𝐶6𝐻5𝐻𝑔, 𝐵 = 𝑂𝐻 - group, 𝐶 = 𝐶𝑙, 𝐵𝑟, 𝐼      

In these processes, a reorganization of the reacting particles occurs, during which some 

chemical bonds are broken (the bond 𝐻𝑔 − 𝑂𝐻 is broken) and others are formed (the bond 𝐻𝑔 −
𝐶).   

The frequencies of the 𝑅 − 𝐻𝑔 − 𝐵 deformation vibrations (here 𝑅 is a part of the A fragment 

except for the 𝐻𝑔 atom) are of the order of 50–140 cm-1, so these frequencies can be considered 

classical. The frequencies of the stretching vibrations of the mercury ion are in the range 170–330 

cm-1, the frequency of the stretching vibration of 𝐻𝑔 − 𝐵 in 𝐶𝐻3𝐻𝑔𝐵 is 386 cm-1, and the 

frequency of the stretching vibrations of the OH group in 𝐻3𝐻𝑔𝑂𝐻  is 511 cm-1 and in 𝐶6𝐻5𝐻𝑔𝑂𝐻 

is 560 cm-1. As a result, all the stretching vibrations of these particles can be considered classical.   

In numerical calculations of ligand substitution reactions, it is convenient to separate the 

reorganization of the reagent molecules and the reorganization of the medium during the process. 

It should be noted that to calculate the reorganization energy of the medium (𝐸𝑟𝑚), it is necessary to 

know the exact distribution of charges on the particles - reagents, which we do not know. But if we 

vary the charges on individual atoms and the correlation lengths of different polarization modes, we 



 
 

can obtain an approximate value of the reorganization energy of the medium, which for the 

reactions under consideration is in the range of 84-170 kJ/mol.  

From the numerical values of the valence and deformation vibrations of the reagents, it can be 

concluded that both in the initial state and in the final state, the potential energy curve describing 

the valence vibrations of the reagents is steeper than the potential energy curve describing the 

deformation vibrations. As a result, in the transition configuration, the leaving group will have a 

bond length equal to the equilibrium bond length in the initial state, and the entering group will 

have a bond length equal to the equilibrium bond length of the final state. As a result, the 

intramolecular reorganization of the system is reduced to the reorganization of the deformation 

degrees of freedom of the system. 

In the harmonic approximation, to calculate the reorganization energy of deformation 

vibrations (𝐸𝑟𝑑), one can use the formula: 

 

𝐸𝑟𝑚 = 
1

2
𝐾𝑑𝜗0

2                                                                                                                        (6) 

 

Where 𝜗0 is the angle of closest approach of the reactants, and 𝐾𝑑  is the effective value of the 

deformation force constant:   

 

𝐾𝑑 =  
2𝐾𝐵𝑑𝐾𝑐𝑑

𝐾𝐵𝑑+ 𝐾𝑐𝑑
                                                                                                                          (7) 

 

Here 𝐾𝐵𝑑  and 𝐾𝑐𝑑  are the values of the deformation constants of molecules AB and AC. 

The calculated values of 𝐾𝐵𝑑  and 𝐾𝑐𝑑  for the reaction with phenyl derivatives mercury turned 

out to be in the range of 200–250 kJ/mol, and for the reaction with methyl derivatives of mercury, 

400–650 kJ/mol. Of real interest are the calculations for these reactions, not only in the harmonic 

approximation, but also in the approximation within the framework of the Pöschl-Teller model, in 

which, as the potential of deformation vibrations, the following expression is used:   

 

𝑢𝑝𝑜𝑡 = 𝐷𝑡ℎ2√
𝐾𝑑

2𝐷
                                                                                                                    (8) 

 

where 𝐷 is the dissociation energy, equal to approximately 250 kJ/mol for the systems under study. 

At the same time, the reorganization energies for the systems under study do not exceed 250 kJ/mol.  

Probability of an elementary act of the electron-adiabatic process of charge transfer. For 

particles of spherically symmetric shape, the motion of which as wholes can be described in the 

classical approximation, the rate constant of the adiabatic process of charge transfer can be 

represented as 

 

𝐾 = 4𝜋𝐺𝑒−𝐻(𝜃) ∫ 𝐿2(𝑅𝐴𝐵)𝑒−𝑈(𝑅𝐴𝐵)/𝑘𝑇∞

0
𝑅𝐴𝐵

2 𝑑𝑅𝐴𝐵                                                               (9) 

 

where 

𝐻(𝜃) =  𝐸𝑟𝑚𝐹𝜔(𝜃) + 𝛽𝜃∆𝐹 + ∑ 2𝐸𝑟𝑛 [𝑐ℎ
𝛽𝜔𝑓𝑛𝜃

2
𝜔𝑓𝑛 + 𝑐ℎ

𝛽𝜔𝑖𝑛(1−𝜃)

2
𝜔𝑓𝑛]𝑛

−1

 

𝐹𝜔(𝜃) =  
2

ħ
∫

𝑑𝜔

𝜔2
𝑓(𝜔) [𝑠ℎ

𝛽𝜔(1−𝜃)

2
∙ 𝑠ℎ

𝛽𝜃𝜔

2
𝑠ℎ

𝛽𝜔

2
⁄ ]                                                                (10) 

 

Here 𝑓(𝜔) is the Green's function of the frequency dependence of the medium polarization 

operators 𝑔𝑚(𝑟,⃗⃗ 𝑟′,⃗⃗⃗⃗ 𝜔) normalized to unity in the approximation  

 

𝐼𝑚𝑔𝑚(𝑟,⃗⃗ 𝑟′,⃗⃗⃗⃗ 𝜔) =  𝜋𝑔𝑚(𝑟,⃗⃗ 𝑟′,⃗⃗⃗⃗ 𝜔 = 0)𝑓(𝜔);    ∫
𝑓(𝜔)

𝜔

∞

−∞
=1                                                          (11) 

 



 
 

In formula (9) 𝐺 has the form:  

 

𝐺 = √
2𝜋

𝐻𝜃𝜃
′′ 𝛽∏ 𝑒𝑥𝑝 [

2𝜃∗

𝑘𝑇
(𝜔𝑓𝑛 + 𝜔𝑖𝑛)] 𝑠ℎ

𝛽𝜔𝑖𝑛

2𝑛 {𝑠ℎ2 [𝛽
𝜔𝑖𝑛

2
(1 − 𝜃∗) +

𝛽𝜔𝑓𝑛

2
𝜃∗ ] +

 
(𝜔𝑓𝑛+ 𝜔𝑖𝑛)

2

4𝜔𝑓𝑛𝜔𝑖𝑛
𝑠ℎ(𝛽𝜔𝑖𝑛(1 − 𝜃∗))𝑠ℎ𝛽𝜔𝑓𝑛𝜃

∗}
−1

2⁄

                                                                 (12) 

 

In formula (10), ∆F is the difference in the slopes of the potential energy terms of the system 

in the initial and final states near their intersection point; 𝜔𝑖𝑛 and 𝜔𝑓𝑛 are the frequencies of 

intramolecular vibrations of the reactants at the beginning (𝜔𝑖𝑛) and at the end (𝜔𝑓𝑛) of the charge 

transfer process.    

As the interaction potential 𝑈(𝑅𝐴𝐵), we will take an infinitely high wall at distances smaller 

than the sum of the particle radii and the Coulomb function at large distances. 

Integrating in formula (9) using the saddle point method, we obtain  

 

𝐾 = 4𝜋𝐺𝑒−𝐻(𝜃∗)(𝑅𝐴𝐵
∗ )2𝛿 ∙ 𝐿2(𝑅𝐴𝐵

∗ )𝑒−𝑈(𝑅𝐴𝐵
∗ )/𝑘𝑇                                                               (13) 

 

At a condition 

|𝑈′(𝑅𝐴𝐵
∗ )| ∙

𝛿

2𝑘𝑇
 ≪ 1                                                                                                          (14) 

 

Here 𝛿  is the characteristic size of the decrease of the electron resonance integral. 

When studying processes, it is possible not to calculate the electron resonance integral and to 

vary its value within certain limits, which will allow calculating the values of the kinetic parameters 

of the charge transfer process for both the non-adiabatic mechanism and the adiabatic mechanism 

for the electron. In this case, the critical value of the electron resonance integral 𝐿𝑐 in the harmonic 

approximation for deformation vibrations has the form     

                                                                  

𝐿𝑐 = [
1

2𝜋3
(2𝑘𝑇𝜔𝑚

2 𝐸𝑟𝑚 + 𝑘𝑇𝜔𝜔𝑑/(𝐾𝐵𝑑𝛼2))]
1/4

                                                                (15) 

 

where 𝜔𝑚 is the characteristic frequency of oscillations of the medium molecules, 𝐸𝑟𝑚 is the 

reorganization energy of the medium, 𝜔𝜔𝑑  is the characteristic frequency of oscillations of the 

reagent, 𝛼 =  𝜆𝑠 − 𝜆𝑖,   𝜆𝑠  and 𝜆𝑖,   are the values of λ in the transition configuration (𝜆𝑠) and at the 

beginning of the process (𝜆𝑖).  

If the process is adiabatic, then for the potential energy of the system the following expression 

can be used: 

 

𝑈(𝜆) = (𝜆0 −  𝜆 + 𝜆2)𝐸𝑟𝑚 + 
1

2
[𝑢𝐵𝑑(𝜆) + 𝑢𝑐𝑑(𝜆)] −

1

2
{[𝑢𝐵𝑑(𝜆) −  𝑢𝑐𝑑(𝜆) −  ∆𝐹 − (1 −

2𝜆)𝐸𝑟𝑚
2 ] + 4𝐿2}1/2                                                                                                               (16) 

 

Where 𝜆0 has the form 

𝜆0 = 
1

2
 +  

∆𝐹

2𝐸𝑟𝑚
                                                                                                                       (17) 

 

For the harmonic approximation, the function 𝑈(𝜆) takes the form     

                                                                                                                                                                    

𝑈(𝜆) =  
1

2
{∆𝐹 + (1 − 2 𝜆 + 2𝜆2)𝐸𝑟𝑚 − 

1

2
[∆𝐹 + (1 − 2 𝜆)𝐸𝑟]

2 −  4𝐿2 }
1/2

                    (18) 

 

where 𝐸𝑟 is the total reorganization energy of system:   



 
 

 

𝐸𝑟 = 𝐸𝑟𝑚 + 𝐸𝑟𝑑                                                                                                             (19) 

 

As studies of the function 𝑈(𝜆) in formula (18) show, it has two minima and one maximum when 

two conditions are met simultaneously: 

 

2𝐿

𝐸𝑟
 < 1;   [1 −  (

2𝐿

𝐸𝑟
 )

2/3
]
3/2

 >  
∆𝐹

𝐸𝑟
  ;                                                                                 (20) 

 

With an increase in the parameter 𝐿 or ∆𝐹, the 𝑈(𝜆) curve has only one maximum, and formally the 

activation energy for the forward reaction (at ∆𝐹 < 0) or for the reverse reaction (∆𝐹 > 0) will turn 

to zero.   

The equation for calculating 𝜃∗ in the harmonic approximation is  

 

∆𝐹 + (1 − 2 𝜃)𝐸𝑟𝑚 =  
𝐸𝑟𝐵 [𝜃2− ǽ(1−𝜃)]

2

[𝜃 + (1−𝜃)ǽ]2
                                                                              (21) 

 

And in the case of equal frequencies at the beginning and end of the transfer process, the last 

equation is solved exactly 

 

𝜃∗ = 
1

2
 +  

∆𝐹

2𝐸𝑟
                                                                                                                          (22) 

 

For adiabatic processes, the equation for determining 𝜃∗ in the harmonic approximation has the 

form 

 
𝐸𝑟𝐵

ǽ

𝜃 
 + (1−ǽ)2 

− 
ǽ𝐸𝑟𝐵(1−𝜃)2

[ǽ+ (1−ǽ)𝜃]2
 + 2𝐸𝑟𝑚 (𝜃 − 

1

2
− 

∆𝐹

2𝐸𝑟𝑚
 ) +  

𝐿(1−2𝜃)

√𝜃(1−𝜃)
= 0                                         (23) 

        

Here ǽ is the transmission coefficient 

 

ǽ =  (1 − 𝑒−𝛾𝑒) (1 − 0.5𝑒−𝛾𝑒)⁄                                                                                                   (24) 

 

Where 𝛾𝑒 is the parameter 

 

𝛾𝑒 = 2𝜋𝐿2/(|𝑣||∆𝐹|)                                                                                                                     (25) 

 

In the relation (25), 𝑣 is the speed of the system near the transition configuration of the system.  

The solution of the last equation leads to three values of 𝜃∗, which correspond to the minima 

of the initial and final states and the transition configuration.  

The activation energy of a nonadiabatic process can be determined for the harmonic 

approximation: 

 

𝐸𝑎 =  (𝜃∗)2𝐸𝑟𝑚 + 
𝐾𝐵𝑑

2
𝜗0

2 (1 +  
1−𝜃∗

𝜃∗
 ǽ)

−2
                                                                                 (26) 

 

and for a potential of type 𝑢𝑝0𝑡
 the activation energy of the process has the form     

                                                                                                                                                           

𝐸𝑎 =  [
𝐷𝑐

2𝐸𝑟𝑚
∙
(𝑡0− 𝑡𝛼)2

(𝑡0+ 𝑡𝛼)2
− 

𝐷𝐵

2𝐸𝑟𝑚
∙
(1−𝑡)2

(1+𝑡)2
+ 

𝐸𝑟𝑚+ ∆𝐹

2𝐸𝑟𝑚
 ]

2

∙ 𝐸𝑟𝑚 + 𝐷𝐵 (
1−𝑡

1+𝑡
)
2
;                                      (27) 

𝑡0 = 𝑒𝑥𝑝 [√
2𝐾𝐵𝑑

𝐷
𝜗0] ;                  𝑡 = 𝑒𝑥𝑝 [√

2𝐾𝐵𝑑

𝐷
𝜗𝐵

∗] 



 
 

 

For adiabatic processes it is necessary to calculate the transition configuration of the transfer 

process for a specific process, and the activation energy will be equal to the difference in potential 

energies at the point of maximum potential energy of the process and at the initial point. Due to the 

cumbersomeness of theoretical calculations, the results for adiabatic ligand substitution reactions 

obtained in numerical calculations are given below in Tables 1-4. 

The partial contribution of the medium 𝐸𝑎𝑚  to the total activation 𝐸𝑎  energy can be 

determined only for nonadiabatic processes and is equal to  

  

𝐸𝑎𝑚 = (𝜃∗2) 𝐸𝑟𝑚                                                                                                                   (28) 

                     

Tables 1–3 present the results of calculations of the parameters of the ligand substitution 

transfer process using the harmonic approximation for the deformation vibrations of reagents, and 

Table 4 for the modified Poeschl-Teller potential (MPTP). The parameters 𝐸𝑟𝑚 and 𝐿 were selected 

individually. 

 

Conclusion 

 

In the framework of theoretical models of the kinetics of charge transfer processes in 

nonregular condensed systems, analytical expressions for the kinetic parameters of a wide class of 

reactions were obtained. It was shown that in describing specific processes, it is very important to 

choose a model of the system within which it is possible to take into account, in a certain model 

approximation, the nature of the chemical reaction and describe the specific properties of the 

reacting particles. Under certain conditions, it is possible to take into account the effects of spatial 

and frequency dispersion of the medium. The interaction of reacting particles with the medium can 

be represented as the sum of two interactions: the interaction of the polarization fluctuations of the 

medium with the static (Coulomb and dipole) field of the reacting particles and the interaction of 

the polarization fluctuations of the medium with the intramolecular oscillations of the reacting 

particles. Specific theoretical models of the process are selected, and the corresponding parameters 

are calculated. In this case, for the deformation vibrations of the reagents, the effects of 

anharmonicity are taken into account for some calculations, and, in particular, the Poeschl-Teller 

potential is used. 

 

Table 1. Kinetic parameters of nonadiabatic ligand substitution reactions. Harmonic approximation 

for deformation vibrations. Erm, Ea - in kJ/mol; KBd  = KCd. 

R X- 

 

Erm 𝜃∗ Ea 

 

 

 

C6H5 

Cl 84 0.54 84.9 

Br 167 0.53 105.8 

I 84 0.53 87.8 

Cl 167 0.52 108.7 

Br 84 0.51 90.7 

I 167 0.50 111.2 

 

 

 

CH3 

Cl 84 0.53 134.6 

Br 167 0.52 156.8 

I 84 0.51 162.6 

Cl 167 0.51 183.5 

Br 84 0.50 194.4 

I 167 0.51 214.9 

Table 2. Kinetic parameters of adiabatic ligand substitution reactions. Harmonic approximation for 

deformation vibrations. Erm, Ea, L - in kJ/mol. 



 
 

R X- 

 
 

Erm L α Ea Erm L α Ea 

 

C6H5 

Cl 84 42 0.49 47.7 167 84 0.46 36.4 

Br 84 42 0.44 50.2 125 84 0.41 29.7 

I 84 42 0.41 55.2 84 84 0.34 24.7 

 

CH3 

Cl 84 167 0.33 14.2 167 188 0.35 19.2 

Br 84 167 0.27 34.7 125 188 0.26 30.1 

I 84 167 0.21 85.3 84 188 0.20 71.5 

 

Table 3. Kinetic parameters of adiabatic ligand substitution reactions. Harmonic approximation for 

deformation vibrations. Erm, Ea, L - in kJ/mol. 

R X- 

 
𝐾𝑑 = 

2𝐾𝐵𝑑𝐾𝑐𝑑

𝐾𝐵𝑑+ 𝐾𝑐𝑑
 𝐾𝑑 = 

2𝐾𝐵𝑑𝐾𝑐𝑑

𝐾𝐵𝑑+ 𝐾𝑐𝑑
 

Erm L α Ea Erm L α Ea 

 

C6H5 

Cl 167 84 0.46 36.4 167 31 0.55 39.3 

Br 125 84 0.41 29.7 125 31 0.51 27.6 

I 84 84 0.34 24.7 84 31 0.42 14.2 

 

CH3 

Cl 167 146 0.41 40.5 167 42 0.51 43.1 

Br 125 220 0.20 14.2 125 52 0.41 28.4 

I 84 272 0.13 24.7 84 63 0.23 18.8 

 

Table 4. Kinetic parameters of adiabatic ligand substitution reactions. The MPTP potential was 

used for deformation vibrations. 𝐸𝑟𝑚, 𝐸𝑎, 𝐿, ∆𝐹 −  are measured in - kJ/mol.; 𝜗0, 𝜗𝐵
∗   in - rad.; 𝐾  in 

– l/mol. Sec. 

R X- Erm L 𝜗0,     KBd  = KCd lgK  ΔF 

𝜗𝐵
∗  α Ea 

 

C6H5 

Cl 167 84 1.24 0.716 0.48 36.8 4.99 44.3 

Br 125 84 1.28 0.709 0.43 30.5 6.02 38.5 

I 84 84 1.t35 0.697 0.41 24.2 6.90 33.9 

 

CH3 

Cl 167 146 1.24 0.677 0.39 40.5 4.33 48.1 

Br 125 220 1.28 0.672 0.29 30.5 5.65 40.5 

I 84 272 1.35 0.683 0.18 32.6 2.94 56.0 
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