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Abstract: The effect of calcination temperature in air of finely dispersed boehmite powders with ferrocene
adsorbed at room temperature from n-hexane solution on X-ray diffraction patterns and EPR spectra of
calcined samples was studied. It has been shown that calcination in air of boehmite samples with adsorbed
ferrocene leads to the decomposition of ferrocene molecules, stabilization of two types of magnetic centers in
the structure of boehmite (at 200 and 400°C) and aluminum oxide (at 600°C) caused by two types of
magnetic centers -Fe** ions with g-factor values, equal to 4.3 and 2.0. The signal at g = 4.3 is attributed to
isolated Fe** ions in the structure of boehmite and aluminum oxide in a local field of oxygen anions with a
rhombic environment. The signal at g = 2.0 is most likely due to Fe*" ions bound by dipole interaction for
samples with a low concentration of supported ferrocene (<0.1 wt.%) and superpara/ferromagnetic FeOx
particles for samples of the calcination product of boehmite with a high content (>0.1 wt.%) of ferrocene.
With increasing content of adsorbeded ferrocene, concentrations of Fe** ions with g-factor values equal to
4.3 and 2.0 grow disproportionately, and mainly the growth of the concentration of superpara/ferromagnetic

FeOx particles on the oxide surface is observed.
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1. Introduction

Over the years since its discovery,
ferrocene [Fe(CsHs),] has remained the focus of
many research centers and is considered a
promising material for potential use in various
fields of science, technology, and medicine [1-
4]. Two aromatic 5-membered cyclopentadienyl
(Cp) rings coordinating iron in the oxidation
state of +2 make ferrocene very stable. Due to
its unique electronic and structural features,
ferrocene and its derivatives have been used to
synthesize a wide range of materials, including
polymers, liquid crystals, and nanoparticles,
with a variety of electronic and magnetic
properties. Ferrocene is used as a potential
electrode material in redox flow batteries due to
its reversible redox behavior and high stability,
as a lubricant to improve the performance and
durability of engines and industrial equipment,

and in the development of drugs for the
treatment of cancer and many tropical diseases,
in the creation of sensors, nanoscale magnetic
materials, and in hydrogen storage [5-8].
Ferrocene is stable in air, characterized by low
toxicity, low cost, and reversible redox
properties. In the presence of oxidants,
ferrocene is oxidized to ferrocenium cation [9,
10]. The discovery of ferrocene and its
structural feature initiated an explosive revival
of organometallic chemistry [11]. There is also
an increased interest in adsorbed ferrocene and
its derivatives, their chemistry on the surface of
various solids [12]. The adsorption of ferrocene
on metals and their oxides, zeolites, carbon
materials - graphene (pure and functionalized),
etc. has been studied [13-16]. It is indicated that
ferrocene is adsorbed on solid surfaces with a
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preferred orientation, which strongly depends
on the substrate [17, 18]. Studies indicate
physical adsorption of ferrocene with the Cp
ring parallel to the surface on Ag(100), and with
the Cp ring perpendicular to the Cu(100) surface
[19]. Ferrocene is reported to dissociate upon
physical adsorption on Au(lll) at room
temperature [20]. The adsorption behavior and
geometry of the stabilized ferrocene molecule
on graphene substrates have been investigated
using density functional theory calculations
taking into account van der Waals forces. These
calculations showed that on graphene substrates
(pure, oxygen- and hydroxyl-functionalized) the
ferrocene molecule is adsorbed with the
molecular axis parallel and perpendicular to the
surface.

It should be noted that studies of the
surface chemistry of ferrocene and its
derivatives are just beginning to gain intensive
attention [21, 22]. Studies show that ferrocene is
a highly volatile substance and when heated to
170-180 °C it sublimates without
decomposition. When the heating temperature
increases to 400 °C, it decomposes in a stream

of inert gas according to the scheme: (CsHs),Fe
— Fe + Hp + CHy + CsHg +..... [23, 24] and
upon calcination - according to the scheme:
ZFE(CsHs)z + 26.50, = Fe,O3 + 20CO, +
10H,0 [25, 26].

This paper presents the results of a study
of the effect of calcination of finely dispersed
boehmite powders with ferrocene adsorbed at
room temperature from an n-hexane solution on
the phase composition and EMR spectra, and
discusses the chemistry of the thermal
decomposition of ferrocene adsorbed from an n-
hexane solution into boehmite in an oxidizing
environment in an air flow.

This paper presents the results of a study
of the effect of calcination temperature of finely
dispersed boehmite powders with ferrocene
adsorbed at room temperature from an n-hexane
solution on the phase composition and EPR
spectra of the decomposition products, and also
discusses the chemistry of the thermal
decomposition of ferrocene adsorbed from an n-
hexane solution into boehmite in an oxidizing
environment in an air flow.

2. Experimental part

Ferrocene was obtained in laboratory
conditions using the method described in [27]
and characterized by elemental analysis, X-ray
diffractometry, UV/Vis electronic absorption
and FTIR spectroscopy. Fine boehmite powder
produced by Qualikems, India was used as an
oxide carrier. The boehmite powders with
adsorbed ferrocene were obtained by applying
n-hexane solutions of ferrocene with different
concentrations to finely dispersed boehmite
powders at room temperature, followed by
drying at 50°C for 4 hours. Thus, samples of
finely dispersed boehmite powders containing
0.1, 1.0, 48 and 13.04 wt% of adsorbed
ferrocene were obtained. Then these samples
were divided into four equal parts and every
three of the four parts were calcined in air for 4

hours at 200, 400 and 600 oC. Thermograms of
the powder samples of boehmite with applied
ferrocene were obtained using a STA 449 F3
Jupiter thermal analyzer from NETZSCH,
Germany, in an air flow in the range of 25-
900°C at a temperature rise rate of 10°C/min.
The phase composition of boehmite powders
with adsorbed ferrocene was determined by X-
ray diffractometry using a Phaser D2
diffractometer, Bruker the infrared spectra of
these samples were recorded on an FT-IR Alfa
spectrometer and EPR spectra on an EMRmicro
spectrometer, Bruker, Germany. UV/Vis spectra
of the n-hexane solutions of ferrocene were
obtained using Specord 50plus, UV/Vis
spectrophotometer, Jena, Germany.

3. Results and discussion

Fig. 1, a, b show diffraction patterns of
finely dispersed powders of boehmite and

ferrocene dried at a temperature of 50 °C for 4
hours.
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The observed diffraction patterns are
characteristic of the boehmite phase y-AlIOOH
(JCPD No. 21-1307) and the ferrocene
compound (JCPD No. 00-029-1711),
respectively.

Fig. 2 shows X-ray diffraction patterns
recorded at room temperature of finely
dispersed boehmite powders with ferrocene
adsorbed at room temperature from an n-hexane
solution, dried at a temperature of 50°C (a), and
then calcined in air at 200 °C (b), 400 °C (c),
and 600 °C (d).

As can be seen from the diffraction
patterns shown in Fig. 2, the boehmite structure
remains unchanged even for samples calcined in
air at 400 °C for 2 hours. The crystalline
structure of y-AlOOH, described in [28], is
orthorhombic. The unit cell consists of two
double layers of distorted AlO4(OH), octahedra
with an aluminum center. The OH groups are
located on the outer surface of the double layers
and interact, holding the layers together.
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Fig. 1. Diffraction patterns of finely dispersed powders of boehmite (a) and ferrocene (b) dried at a

temperature of 50°C for 4 hours.
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Fig. 2. X-ray diffraction patterns recorded at room temperature of finely dispersed boehmite powder
with adsorbed ferrocene (13.0 wt.%) dried at 50°C (a) and then calcined in air at 200 °C (b), 400 °C

(c), and 600 °C (d).
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It is believed that in the boehmite crystal,
half of the hydroxyls are interlayer and the other
half are surface [29, 30]. For samples calcined
at 600 °C, only phases -characteristic of
aluminum oxide are observed.

Fig. 3 shows the EPR spectra recorded at
room temperature of finely dispersed boehmite
powders dried at a temperature of 50°C (a) and
then calcined in air for 2 hours at a temperature
of 400 °C (b) and 600 °C (c).

As can be seen from the EPR spectrum
shown in Fig. 3a, the finely dispersed boehmite
sample used as a carrier contains impurity iron
ions Fe**, stabilized in the boehmite structure in
the form of isolated ions, replacing the AI** ions
(the values of the radii of the AI** and Fe*" ions
are 0.53 and 0.62 A, respectively). The EPR
spectrum of these ions is characterized by an
almost symmetrical shape with a width of ~160
G and a g-factor value of 4.3.
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Fig. 3. EPR spectra recorded at room temperature of finely dispersed boehmite powders dried at a
temperature of 50°C (a) and then calcined in air for 2 hours at a temperature of 400 °C (b) and 600

°C (c).

We believe that the observed signals in

Fig. 3.a,b are unusual, in the sense that not a

single similar signal for iron ions in the

boehmite structure has been found in the

literature. The shape and position of these

signals indicate that the Fe** ions are in

octahedral fields with a high degree of

distortion. For the heat treatment at 600 °C, it is

noted that the signal around g = 2.0 increases

significantly, while the signal with g = 4.3

decreases noticeably, indicating that the Fe®'

ions with signals near g = 2 are increased by

Fe** with a g -factor of 4.3. The results of the
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XRD data (Fig. 2) show that the crystal
structure of boehmite is unstable to the severe
thermal-oxidative treatment at 600 °C. In this
case, boehmite is transformed into aluminum
oxide. Such thermal-oxidative treatment
stimulates the rearrangement of Fe®*" ions and
favors the formation of clusters from FeOx
structures.

Fig. 4 shows the EPR spectra at room
temperature of finely dispersed boehmite
powder calcined in air at a temperature of 600
°C for 2 hours, containing (a) 0.1, (b) 1, (c) 4.8
and (d) 13.0 wt. % adsorbed ferrocene.
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Fig. 4. EPR spectra recorded at room temperature of finely dispersed boehmite powder with
adsorbed ferrocene calcined in air at a temperature of 600 °C for 2 hours — (a) — 0.1, (b) — 1, (c) —

4.8 and (d) — 13.0 wt. % ferrocene.

As can be seen from the presented EPR
spectra, two types of magnetic centers are
observed. The first type most likely belongs to
isolated iron ions Fe** with a g-factor value of
4.3 and stabilized in local fields of oxygen
anions of distorted tetrahedral or octahedral
shapes with rhombic distortion, and the second
to clusters of Fe** ions bound by dipole-dipole

and exchange interactions at low ferrocene
contents (< 0.1 wt.%) and FeOx particles for
samples with a higher ferrocene concentration
(1.0-13.0 wt.%) [31, 32]. In this case, these two
centers are  formed  during  thermal
decomposition in an oxygen atmosphere of
ferrocene deposited on boehmite [33, 34]:

2(C5H5)2Fe + 2A|O(OH) + 26.50, > Fe,03 + Al,O3+ 11H,0 + 20CO, (1)

The mass of the solid residue in
accordance with this equation of decomposition
of ferrocene deposited on boehmite is 19.0
wt.%.

Fig. 5 shows thermograms of finely

.a)

dispersed boehmite powders with ferrocene
adsorbed at room temperature from an n-hexane
solution, containing 0.1 and 13.0 wt.%
ferrocene and dried at 60 °C for 2 hours.

b)

Fig. 5. Thermograms of finely dispersed boehmite powders with ferrocene adsorbed at room
temperature from an n-hexane solution, containing: a) 1.0 and b) 13.0 wt.% ferrocene and dried at
60°C for 2 hours.

As can be seen from the thermograms, a
significant weight loss corresponding to
dehydration-dehydroxylation of the samples
was observed from 100 to 700°C, which could

be divided into two clearly visible stages. The
first stage (from room temperature to 450°C) is
due to the desorption of physisorbed water
molecules, n-hexane and thermo-oxidative

CHEMICAL PROBLEMS 2025 no. 1 (23)



112

A.l. RUSTAMOVA et al.

decomposition of most likely chemisorbed
ferrocene. The second stage is due (450-600°C)
mainly to the release of water as a result of the
transformation of boehmite into aluminum
oxide (2AIO0OH = Al,03 + H;0). Thermal
decomposition of boehmite with adsorbed

ferrocene occurs with the formation of an
initially =Al-O-Fe(CsHs) structure on the
surface of boehmite as a result of the reaction
between ferrocene and the hydroxyls of the
boehmite surface:

:A|-O-Fe(05H5) =Al-OH + (C5H5)2Fe => :AI-O-Fe(C5H5) + CsHe.

Calcination in air of a boehmite sample
with adsorbed ferrocene is accompanied by a
thermo-oxidative process, resulting in the
formation of highly dispersed iron oxide
structures that are not appear in X-ray
diffraction patterns, but are clearly recorded in

EPR spectra. Most likely, during calcination,
part of the resulting highly dispersed iron oxide
structures reacts with boehmite, forming solid
solutions of Al;.xFex)OOH based on boehmite at
temperatures up to 600 °C and solid solutions of
Al «Fe,O3 at temperatures > 600 °C.

Conclusion

The above studies and currently available
literature data indicate that the thermochemistry
of ferrocene and its derivatives applied to solid
surfaces is insufficiently studied. In this paper,
finely dispersed ferrocene is adsorbed by
precipitation from a solution of n-hexane onto
boehmite and the results of the study are
presented using X-ray diffractometry, electron
magnetic resonance and thermal analysis. Solid
products of the interaction of ferrocene with
boehmite during calcination in air have been
identified.It is shown that with increasing
calcination temperature, reactions of thermo-
oxidative decomposition of ferrocene occur with
the formation of iron oxides and stabilization of
some iron ions in the form of Fe** ions in the
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