УДК 547.264.661.7

ТЕРМОДИНАМИЧЕСКОЕ ИССЛЕДОВАНИЕ РЕАКЦИИ ДЕГИДРИРОВАНИЯ втор- БУТИЛОВОГО СПИРТА В МЕТИЛЭТИЛКЕТОН

А.М.Алиев, А.А.Сарыджанов

Институт Катализа и Неорганической Химии имени акад. М.Нагиева Национальной АН Азербайджана AZ 1143, Баку, ул. Г.Джавида, 113, e-mail: kqki@kqki.science.az

Проведено термодинамическое исследование реакции дегидрирования втор-бутилового спирта в метилэтилкетон. Рассчитаны термодинамическое параметры (ΔH_T , ΔG_T , ΔS_T), определена константа равновесия (K_p) и выход целевого продукта при различных температурах. Показано, что при температурах выше 550K выход метилэтилкетона практически достигает 96-100%.

Ключевые слова: дегидрирование, втор-бутиловый спирт, термодинамика, изобарный потенциал, константа равновесия.

Основным методом получения метилэтилкетона (МЭК) - ценного сырья, применяемого как растворитель в различных отраслях промышленности, а также в производстве органического синтеза, является дегидрирование или окисление втор- бутилового спирта (ВБС) [1].

Для подбора активного катализатора, а также поиска оптимальных условий получения МЭК необходимо располагать данными о равновесии изучаемой реакции.

Помимо основной реакции дегидрирования втор-бутилового спирта ($C_4H_9OH \rightarrow C_4H_8O + H_2$), могут протекать также реакции дегидратации с образованием бутена-2 ($C_4H_9OH \rightarrow C_4H_8 + H_2O$).

При оптимальных условиях ведения процесса количество спирта, затрачиваемого на побочную реакцию, не превышает одного процента [1]. Поэтому нами было проведено термодинамическое исследование реакции дегидрирования ВБС в МЭК.

Для проведения термодинамических расчетов использовали величины образования ΔH_{T}^{0} , ΔG_{T}^{0} , ΔS_{T}^{0} и $C_{R_{T}}^{0}$ для газообразных С₄Н₉ОН, С₄Н₈О и Н₂, а также значения коэффицентов (a, b, c, d), уравнения, описывающие входящих температурную зависимость теплоемкости данного вешества [2-4].Выбранные значения термодинамических величин приведены в таблице 1.

T	юл. 1.	Гермодинамические характеристики веществ
---	--------	--

Вещества	$\Delta \mathrm{H}^{0}_{298,16,}$ кдж \cdot моль $^{-1}$	ΔG _{298,16,} кдж·моль ⁻¹	$S^0_{298,16,}$ дж \cdot моль $^{-1}$, град $^{-1}$	Коэффициенты уравнения $C^0_P = f(T)$, дж·моль- 1 к- 1				$C^0_{P_{298.16}}$ дж·моль $^{-1}$,
, , , , , ,				a	b	c	d	град ⁻¹
Втор- бутиловый спирт	-292.63	-167.61	359.03	5.75	4.24 · 10 - 1	-23.26· 10 ⁻⁵	4.77· 10 ⁻⁸	113.30
Метилэтил- кетон	-238.36	-146.06	339.36	10.94	35.56·10 ⁻²	18.98·10 ⁻⁵	39.17·10 ⁻⁹	103.26
водород	0	0	130.58	27.12	9.2·10 ⁻³	-13.79· 10 ⁻⁶	7.64·10 ⁻⁹	28.86

Пользуясь данными таблицы 1, вычисляли тепловой эффект ($\Delta H_{298,16}$) , изобарный потенциал ($\Delta G_{298,16}$) , изменение

энтропии ($\Delta S_{298,16}$) и изобарные теплоемкости ($C^0_{P_{298,16}}$) реакции дегидрирования. Значения $\Delta H^0_{298,16}$,

 $\Delta G^0_{298,16},\,\Delta S^0_{298,16}$ и $\,\Delta C^0_{\,\,P_{298,16}}$ определяли как разность между суммой стандартных теплот ($\Delta H^0_{298.16}$), энтропий ($\Delta S^0_{298.16}$) и теплоемкостей ($\Delta C^{0}_{P298,16}$) образования продуктов реакции и исходных веществ из элементов. При ЭТОМ найдено, $\Delta H^{0}_{298,16} = 54.27$ кдж/моль, $\Delta S^{0}_{298,16} = 110.91$ $\Delta G^{0}_{298,16}$ =21.55кдж/моль, $\Delta C^0_{P_{298,16}}$ дж/моль •град =18.82дж/моль•град.

Изобарный потенциал при различных температурах реакции (ΔG_T^0) вычисляют по уравнению

$$\Delta G_T^0 = \Delta G_{T_{ofn\ MSK}}^0 - \Delta G_{T_{ofn\ BKC}}^0 \tag{1}$$

Вычислив по уравнению (1) значение изменения энергии Гиббса, находили константу равновесия из уравнения:

$$\Delta G_T^0 = -RT \ln K_P^T; \log K_P^T = -\frac{\Delta G_T^0}{19.147T}$$
 (2)

где: R — газовая постоянная (R=8.3094 дж/моль•град).

В таблице 2 приведены рассчитанные значения энергии Гиббса (ΔG_T^0) и констант равновесия (K_{P_T}) при различных температурах для реакции дегидрирования ВБС в МЭК.

Из значений констант равновесия определяли теоретический выход МЭК при различных температурах. Константа равновесия реакции дегидрирования ВБС имеет вид:

$$K_P^T = \frac{x \cdot x}{(1 - x)} \tag{3}$$

где: x - число молей МЭК и H_2 , а (1-x) - число молей ВБС при равновесии.

Подставляя в уравнение (3) рассчитанные значения констант равновесия (K_P^T) при различных температурах, находим число молей (x) продукта реакции (МЭК).

Табл. 2. Температурные зависимости изобарно-изотермического потенциала (ΔG_T^0), теплоемкостей (ΔC^0), констант равновесия (K_P^T) и их логарифмов (logK $_{P_T}$) и выхода МЭК (A)

(-)										
T (K)	кд	ж·мол ⁻¹ , при Т	, K	log K	K_P^T	A,%				
1 (K)	ΔC^0 oбр BБС	$\Delta { m C}^0$ обрМЭК	ΔC^0 Треак.	$\log K_{p_T}$	K P					
300	-166.82	-146.02	20.8	-3.625	2.367·10 ⁻⁴	1.51				
400	-123.80	-114.27	9.53	-1.245	5.69	23.23				
450	-101.45	-97.69	3.76	-0.436	0.366	51.7				
500	-79.12	-81.13	-2.01	0.21	1.62	78.72				
550	-56.21	-64.08	-7.87	0.703	5.04	91.35				
600	-33.30	-47.03	-13.23	1.196	15.73	96.96				
650	-10.04	-29.66	-19.62	1.576	37.71	98.69				
700	13.22	-12.30	-25.52	1.905	80.28	99.38				

Из табл.2 видно, что начиная с 550К равновесный выход МЭК равно 91.4%, а выше этой температуры (700К) выход МЭК достигает 100%. Таким образом, на основании проведенных термодинами-

ческих расчетов можно сказать, что реакцию дегидрирования ВБС в МЭК можно осуществлять с высоким выходом МЭК (96-99%) в области температур 600- 700^{0} K.

ЛИТЕРАТУРА

- 1. Гущевский А.Б., Колесов М.Л, Петров А.Н., Чернишкова Ф.А. Современное состояние и перспек-
- тива производства метилэтилкетона. М., 1987. 45 с.
- 2. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей (пер. с

- англ. Под редакцией Соколова Б.И) Л. Химия. 1982. 533 с.
- 3. Васильев И.А., Петров В.М. Термодинамические свойства кислородсодержащих органических
- соединений: справочник. Л., Химия. 1984. 240 с.
- 4. Равдель А.А., Пономарева А.М. Краткий справочних физико-химических величин. Л., Химия. 1983. 231 с.

REFERENCES

- 1. Gushhevskij A.B., Kolesov M.L, Petrov A.N., Chernishkova F.A. *Sovremennoe sostojanie i perspektiva proizvodstva metiljetilketona* [Current state and prospects of methylketone production]. Moscow, 1986, 45 p.
- 2. Rid R., Prausnic Dzh., Shervud T. *Svojstva gazov i zhidkostej.* (*Per.s angl. Pod redakciej Sokolova B.I.*) [Properties of gases and liquids. Translated from English. Ed.by Sokolov B.I.] L., Himiya Publ., 1982, 533 p. (In Russian).
- 3. Vasil'ev I.A., Petrov V.M. *Termodinamicheskie svojstva kislorodsoderzhashhih organicheskih soedinenij: spravochnik.* [Thermodynamic properties of oxygen-containing compounds: handbook]. L., Himiya Publ., 1984, 240 p.
- 4. Ravdel' A.A., Ponomareva A.M. *Kratkij spravochnih fiziko-himicheskih velichin*. [Concise handbook on physical-chemical values].L., Himiya Publ., 1983,231p. (In Russian).

THERMODYNAMIC RESEARCH INTO REACTION OF DEHYDROGENATION OF SEC-BUTHYL ALCOHOL INTO METHYLETHYLKETONE

A.M.Aliyev, A.A.Sarijanov

Institute of Catalysis and Inorganic Chemistry named after Acad.M.Nagiyev H.Javid ave., 113, Baku AZ 1143, Azerbaijan Republic; e-mail: kqki@kqki.science.az

Thermodynamic research into reaction of dehydrogenation of sec-buthyl alcohol into methylethylketone has been carried out. Thermodynamic parameters (ΔH_T^0 , ΔG_T^0 , ΔS_T^0), equlibrium constant (K_P) and the yield of main product at various temperatures have been calculated. It showed that the yield of methylethylketone at temperatures above 550K reaches 96-100%.

Keywords: dehydrogenation, sec-buthyl alcohol, thermodynamics, equilibrium constant, isobaric potential.

İKİLİ BUTİL SPİRTİNİN METİLETİLKETONA DEHİDROGENLƏŞMƏ REAKSİYASININ TERMODİNAMİKİ TƏDQİQİ

A.M. Əliyev, Ə. Ə. Sarıcanov

AMEA-nın akad. M.Nağıyev adına Kataliz və Qeyri-üzvi Kimya İnstitutu AZ 1143, Bakı, H.Cavid pr., 113; e-mail: kqki@kqki.science.az

İşdə ikili butil spirtinin metiletilketona dehidrogenləşmə reaksiyasının termodinamiki tədqiqi aparılmışdır. Reaksiyanın termodinamiki parametrləri (ΔH_T^0 , ΔG_T^0 , ΔS_T^0), tarazlıq sabiti (K_P) və əsas məhsulun çıxımı hesablanmışdır. Göstərilmişdir ki, 550K-dən yuxarı temperaturlarda metiletilketonun çıxımı praktiki olaraq 96-100%-ə çatır.

Açar sözlər: dehidrogenləşmə, ikili butil spirti, termodinamika, izobar potensial,tarazlıq sabiti.

Redaksiyaya daxil olub 10.01.2016.