

UDC 541.123.3

PHASE EQUILIBRIA IN THE CuInSe₂-Ge-Se QUASİTERNARY SYSTEM N.M. Allazova¹, R.F. Abbasova², T.M. Ilyasli², I.I. Aliyev¹, M.R. Allazov³

¹Acad. M. Nagiyev Institute of Catalysis and Inorganic Chemistry National Academy of Sciences of Azerbaijan 113, H. Javid. ave., AZ 1143, Baku, Azerbaijan ²Baku State University, 23, Acad. Z.Khalilov str., AZ 1148 Baku, Azerbaijan ³ Azerbaijan Technical University 25, H. Javid ave., AZ 1073, Baku, Azerbaijan Phone: +994 50 4770082, e-mail: allazova.nigar@gmail.com

> Received 16.03.2020 Accepted 29.05.2020

Abstract: Phase equilibria in the CuInSe₂-Ge-Se ternary system were studied by methods of differential thermal analysis (DTA), X-ray phase (XRD), microstructural (MSA) analyzes and measurement of microhardness. Results of these studies were summarized and presented in the paper. Phase diagrams of CuInSe₂-Ge, CuInSe₂-GeSe, CuInGeSe₄ - Ge, CuInGeSe₄ - GeSe, CuInGeSe₄ -Se and liquidus surface projections of quasi-ternary system established and monovariant curves, regions of phase delamination in the liquid state, coordinates of monotectic, metathetic, peritectic and eutectic processes determined. Also, a region of primary crystallization of a low-temperature polymorphic form (phase with a chalcopyrite structure) of the CuInSe₂ compound in the presence of germanium chalcogenides specified.

Keywords: system, chalcopyrite phase, phase equilibria, liquidus surface projection, chalcopyrite phase, phase transition

DOI: 10.32737/2221-8688-2020-2-244-249

Introduction

The low-temperature chalcopyrite phase of the CuInSe2 compound is of interest as a solar energy converter [1-3]. However, its conversion coefficient strongly depends on imperfections of the crystal structure which are formed mainly during the polymorphic transition of sphalerite ⇔ chalcopyrite. Therefore, to reduce these imperfections, crystallization is carried out by flux method [4-5].

Earlier, we presented results of the study of phase equilibria in the CuInSe₂-Sn-Se and CuInSe₂-Pb-Se systems where regions of primary crystallization of α-CuInSe₂ directly from the liquid melt were determined [6, 7].

In the present work, the possibility of using germanium and its selenides as solvents for the primary crystallization chalcopyrite phase of the CuInSe₂ compound was clarified. For this purpose, the pattern of interaction of CuInSe₂-Ge-Se system components was determined, especially in areas where the chalcopyrite phase of the CuInSe₂ compound was directly crystallized from the liquid melt.

Experimental part

The initial samples for the study were synthesized by fusion from calculated amounts of highly pure elements (copper - grade M0, indium grade In-000, germanium with a resistivity of 40 Ohm cm, selenium grade OSCH 19-4) in evacuated (~ 0.1 Pa) and sealed quartz ampoules at 1100° C for 6 hours. Then the furnace was cooled to 600° C and stored for

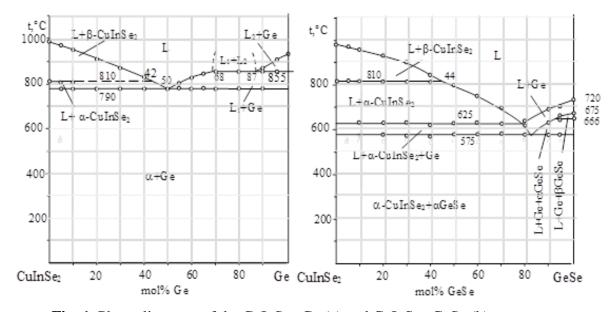
200 hours.

The resulting ingots were equilibrium polycrystals and characterized by differential thermal analysis (DTA) and X-ray diffraction (XRD).

During DTA, phase transition the temperatures were determined using chromel/alumel thermocouple with a heating and cooling rate of 10 K/min on a two-coordinate potentiometer N307/1. Calcined aluminum oxide served as a reference.

X-ray powder diffraction patterns were recorded with Bruker D8 diffractometer using $CuK\alpha$ radiation with a nickel filter.

Microstructures of polished samples were examined on a METAM-P1 metallographic microscope, and microhardness measurements carried out on a PMT-3 microhardness tester under a load of 20 g.


Results and discussion

The nature of physicochemical interaction of some sections of the ternary system CuInSe₂-Ge-Se is presented below. Also, projections of the liquidus surface were constructed.

The CuInSe₂-Ge section is quasibinary. Phase diagram of this section is eutectic, there is a region of immiscibility on the side of germanium (Fig. 1a). The eutectic crystallizes at 50 mol.% Ge and 7900C. The monotectic process occurrs at 8500C in the area of 67-87 mol.% Ge.

The CuInSe₂-GeSe section is non-quasibinary and quasi-stable simultaneously, since just two phases α -CuInSe₂ and α -GeSe are determined in the sub-solidus of the system (Fig. 1b).

Under the influence of germanium monoselenide, the temperature of the polymorphic transition of the CuInSe $_2$ compound does not change, and the isothermal line of this transition, determined at 810^{0} C, crosses the liquidus at 44 mol.% GeSe. Primary crystallization of the chalcopyrite phase (α -CuInSe $_2$) occurs directly from the liquid melt in the concentration region 44–78 mol% of GeSe.

Fig. 1. Phase diagrams of the CuInSe₂-Ge (a) and CuInSe₂-GeSe (b) systems.

As, it is known, GeSe is formed by peritectic between the liquid and germanium. In the section, before intersection of liquidus (α -CuInSe₂) curves, the temperature of primary crystallization of germanium decreases from 720 to 625 0 C. Crystallization in the system is over through fourphase peritectic reaction:

L+ Ge $\leftrightarrow \alpha$ -GeSe at 575^oC

Solubility based on the starting components is practically absent.

The CuInGeSe₄-Ge section is non-quasibinary. According to [8, 9], the CuInGeSe₄ compound is formed by the peritectic reaction in the quasibinary CuInSe₂-GeSe₂ system at 712^oC.

The liquidus of the CuInGeSe₄-Ge system consists of two primary crystallization curves of α -CuInSe₂ and germanium, which intersect at 40 at% Ge and 640 0 C (Fig.2a).

The CuInGeSe₄-GeSe section is nonquasi-binary. The liquidus of the system consists of two curves of primary crystallization of α -CuInSe₂ and germanium that intersect at 40 mol% GeSe and 660°C (Fig. 2b).

Crystallization in the system is completed by a four-phase peritectic reaction:

 $L+ \alpha$ -CuInSe₂ \leftrightarrow CuInGeSe₄ $+ \alpha$ -GeSe at 575⁰C

Solubility based on the starting components is practically absent.

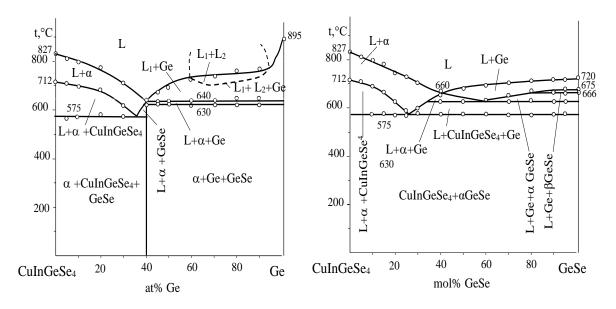


Fig. 2. Phase diagrams of the CuInGeSe₄ - Ge (a) and CuInGeSe₄ - GeSe (b) systems.

The CuInGeSe₄-Se section is quasi-stable and participates in the incongruent triangulation of the CuInSe₂-Ge-Se ternary system. The liquidus of the system mainly consists of the curve of the primary crystallization of the α -phase (the low-temperature polymorphic form of CuInSe₂) (Fig. 3). Crystallization in the

system is completed at a temperature of ternary peritectic, 215°C. There is no solubility based on the starting components.

The microhardness of the $CuInGeSe_4$ phase is determined at 300 MPa, and the microhardness of the selenium phase is 450 MPa.

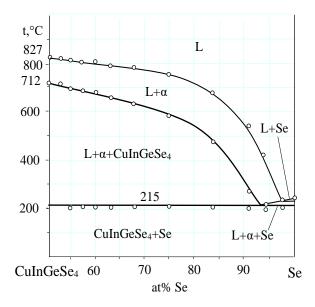
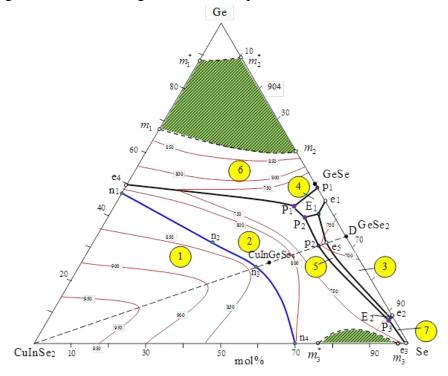


Fig. 3. Phase diagram of the CuInGeSe₄ - Se system

The projection of the liquidus surface of the CuInSe₂-Ge-Se system (Fig. 4) is constructed on the data of phase diagrams of the abovementioned sections of the quasi binary systems CuInSe₂-GeSe₂[8], CuInSe₂-Se [10] and Ge-Se [6]. Here, the quasibinary section CuInSe₂ –


 $GeSe_2$ is a diagonal section and divides the quasi ternary system into two subsystems: $CuInSe_2-GeSe_2-Se$ and $CuInSe_2-GeS$

In the first subsystem, two triple peritectic and one eutectic process were found:

- $\{P_1\}$ L+Ge \leftrightarrow CuInGeSe₄+GeSe at 575⁰C
- $\{P_2\}$ L + CuInSe₂ \leftrightarrow CuInGeSe₄+Ge at 630⁰C
- $\{E_1\}$ L \leftrightarrow CuInGeSe₄+GeSe+ GeSe₂ at 560° C

As known, metathetic processes in the CuInSe₂-Se and Ge-Se systems occur with the participation of germanium and the delamination regions are closer to germanium.

In the quasi-ternary subsystem, these immiscible regions merge with each other and form one common immiscible region in the liquid state.

Fig. 4. Projection diagram of the liquidus surface of the CuInSe₂-Ge-Se system. Primary crystallization field: 1-β-CuInSe₂, 2-α-CuInSe₂, 3-GeSe₂, 4-, 5-CuInGeSe₄, 6-Ge, 7-Se

In the first subsystem, β -CuInSe₂, α -CuInSe, GeSe₂, GeSe and germanium phases are crystallized primarily. A part of the primary crystallization of germanium occurs under monotectic line.

In the second subsystem, the phases β -CuInSe₂, α -CuInSe₂, GeSe₂ and selenium are primarily crystallized. A part of the primary

crystallization of α -CuInSe₂ occurrs under delamination. Here crystallization is over at 200^{0} C in a triple eutectic, the composition of which is designated as E₂. Prior to this, a fourphase peritectic process of separation of the CuInGeSe₄ compound takes place along the isothermal plane at 215^{0} C.

Conclusions

Thus, 7 fields of primary crystallization of phases are established in the quasi-ternary

 $CuInSe_2 - Ge - Se$ system and phase equilibria were studied. The transition boundary of the

primary crystallization fields α -CuInSe₂ and β -CuInSe₂ was determined, it is indicated in Fig. 4

by blue line $(n_1n_2n_3n_4)$.

References

- 1. Medvedkin G.A., Terukov E.I., Sato K. et al. Photoluminescent properties of polycrystalline solar cells ZnO / CdS / CuInGaSe₂ at low temperature. Semiconductors/physics of the solid state. 2001, vol.35, no.11, p.1385. (In Russian).
- 2. Modern problems of semiconductor photovoltaics. Fonash S., Ed. T. Kautsa, J. Mirnina. Moscow: Mir Publ., 1988, 307 p.
- 3. Maronchuk I.I., Sanikovich D.D., Mironchuk V.I. Solar cells: current status and development prospects. *Izvestiya Vysshikh Uchebnykh Zavedenii, Energetika Energetika. Proceedings of CIS higher education institutions and power engineering associations.* 2019, vol. 62, no. 2, pp.105-123. (In Russian).
- 4. Preparative methods in solid state chemistry., ed. P. Hagenmüller. Moscow: Mir Publ., 1976, p.208.
- 5. Zargarova M.I., Babaeva P.K., Azhdarova D.S. et al. Study of CuInSe₂-InSe₂ (SnSe₂, Bi₂Se₃) systems. *Inorganic Materials*. 1995, vol. 31, no.2, p.282. (In Russian).
- 6. Allazova N.M., Abbasova R.F., Ilyasly T.M.

- Primary crystallization area of the chalcopyrite phase in the CuInSe2-Sn-Se system. *Russian Journal of Inorganic Chemistry*. 2011, vol. 56, no. 10, pp.1714–1719.
- 7. Allazova N.M., Ilyasly T.M. Primary crystallization area of the chalcopyrite phase in the CuInSe₂-Pb-Se system. *Azerbaijan Chemical Journal*, 2015, no. 1, pp. 60-66.
- 8. Vakulovich A.P., Olekseyuk I.D. Phase equilibria in the CuInSe₂-GeSe₂ and CuInSe₂-Cu₂GeSe₃ sections of the quaternary Cu₂Se-In2Se₃-GeSe₂ system. *Alloys and Compounds*, 2004, vol. 24, pp. 47-48.
- 9. Matsushita H., Maeda T., Katsui A., Takizawa Thermal T. Analyses of CuInGeSe₄ Quaternary Compound for Crystal Growth by Solution Method. Japanese Journal of Applied Physics. 2000, vol. 39, no.1, p.62.
- 10. The state diagram of binary metal systems. Directory. / Ed. N.P. Lyakisheva. Moscow, 2001, vol.2, 1024 p.

CuInSe₂-Ge-Se KVAZİÜÇLÜ SİSTEMİNDƏ FAZA TARAZLIĞI ¹N.M. Allazova, ²R.F. Abbasova, ²T.M. İlyaslı, ¹İ.İ. Əliyev, ³M.R. Allazov

¹AMEA-nın Kataliz və Qeyri-üzvi Kimya İnstitutu Az 1143, Bakı, H. Cavid pr., 113 ²Bakı Dövlət Universiteti AZ 1148, Bakı, Z. Xəlilov küç, 23 ³Azərbaycan Texniki Universiteti Az 1073,Bakı, H. Cavid pr., 25 e-mail:allazov m@mail.ru

Differensial-termiki (DTA), rentgen-faza (RFA), mikroquruluş (MQA) və mikrobərkliyin ölçülməsi üsulları ilə CuInSe₂-Ge-Se üçlü sisteminin bütün qatılıq sahələrində faza tarazlığı öyrənilmişdir və nəticələr ümumiləşdirilib və bu məqalədə verilir. Kvaziüçlü sistemin CuInSe₂-Ge, CuInSe₂-GeSe, CuInGeSe₄ - Ge, CuInGeSe₄ - GeSe, CuInGeSe₄ - Se kəsiklərinin faza diaqramları və özünün likvidus səthinin ortoqonal proyeksiyası qurulmuşdur. Sistem daxilində maye fazada təbəqələşmə sahəsi, monovariant əyrilər, monotektik, metatektik, peritektik və evtektik proseslərin koordinatları təyin edilmişdir. CuInSe₂ birləşməsinin aşağı temperaturlu polimorf formasının (xalkopirit quruluşlu fazanın) ilkin kristallaşma sahələrinə germanium xalkogenidlərinin təsiri dəqiqləşdirilmişdir.

Açar sözlər: sistem, faza tarazılığı, likvidus səthinin proyeksiyası, xalkopirit fazası, faza keçidi

Φ АЗОВЫЕ РАВНОВЕСИЯ В КВАЗИТРОЙНОЙ СИСТЕМЕ CuInSe₂-Ge-Se 1 Н.М. Аллазова, 2 Р.Ф. Аббасова, 2 Т.М. Ильяслы, 1 И.И. Алиев, 3 М.Р. Аллазов

Методами дифференциально-термического (ДTA),рентгенофазового $(P\Phi A)$. микроструктурного (МСА) и измерением микротвердости исследованы фазовые равновесия в тройной системе CuInSe2-Ge-Se во всей концентрационной области. Результаты исследований обобщены и представлены в настоящей статье. Установлены фазовые диаграммы систем CuInSe₂- Ge, CuInSe₂-GeSe, CuInGeSe₄ - Ge, CuInGeSe₄ - GeSe, CuInGeSe₄ -Se, а также диаграммы проекции поверхности ликвидуса квазитройной системы. Определены моновариантные кривые, области расслаивания фаз в жидком состоянии, координаты монотектических, метатектических, перитектических и эвтектических кристаллизации проиессов. Уточнены область первичной низкотемпературной полиморфной формы (фазы со структурой халькопирита) соединения CuInSe₂ в присутствие халькогенидов германия.

Ключевые слова: система, фазовые равновесия, проекция поверхности ликвидуса, халькопиритная фаза, фазовый переход.