

UDC 546.814.86.23

REFINEMENT OF THE PHASE DIAGRAM OF THE SnSe - Sb₂Se₃ SYSTEM

E.N. Ismailova^{1*}, I.B. Bakhtiyarly¹, M.B. Babanly^{1,2}

¹Acad. M. Nagiev Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of Azerbaijan, 113, H. Javid ave., AZ 1143 Baku, Azerbaijan ² Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan e-mail:* Ismayilova818@mail.ru

> Received 15.01.2020 Accepted 18.03.2020

Abstract: Considering the inconsistency of the available literature data on phase equilibria in the SnSe - Sb_2Se_3 system, the issue was re-examined by differential thermal analysis and X-ray diffraction technique. A new, refined version of the phase diagram was constructed. It was found that the ternary compound $Sn_2Sb_2Se_5$ and the intermediate γ -phase with a homogeneity region of 48-60 mol% Sb_2Se_3 are formed in the system, which melting with decomposition by peritectic reactions at $598^{\circ}C$ ($Sn_2Sb_2Se_5$) and $560^{\circ}C$ (γ -phase). This area includes stoichiometric compositions of ternary compounds SnSb₂Se₄ and Sn₂Sb₆Se₁₁. A comparative analysis of the results obtained with literature data was carried out.

Keywords: $SnSe - Sb_2Se_3$ system, phase diagram, eutectic, tin and antimony selenides.

DOI: 10.32737/2221-8688-2020-2-250-256

Introduction

Compounds formed in the $A^{1V}X - B^{V}_{2}X_{3}$ (A¹V - Sn, Pb; B^V - Sb, Bi; X - Se, Te) quasi-binary systems are promising functional materials. In particular, compounds of the A^{IV}B^V₂Te₄, A^{IV}B^V₄Te₇, A^{IV}B^V₆Te₁₀ types with tetradimitelike layered structure had higher thermoelectric parameters as compared to A¹VTe and B₂Te₃ binary compounds [1-5]. In addition, recent studies show that most of these compounds are three-dimensional topological insulators and can be used in spintronics [6-9]. Alloys of the Sn – Sb – Se system are of interest in thermoelectric materials in both crystalline and glass formed states [10–12].

The development of methods synthesis of new complex phases was based on phase equilibriia data in the corresponding systems [13-16].

The development of methods synthesis of new complex phases is based on data on phase equilibria in the corresponding systems [13-16An analysis of the literature data [17-19] on the phase equilibria in the SnSe -Sb₂Se₃ quasi-binary system shows that they are of controversial nature. According to [17], it was characterized by the formation of one congruently melting ternary compound $Sn_2Sb_6Se_{11}$ (563°C). Two eutectics detected in the system which crystallized at 553° C and 550° C and had compositions of 54.5 and 61.5 mol % Sb₂ Se₃, respectively. According to [18], two compounds were formed in the system: Sn₂Sb₆Se₁₁ with congruent melting at 561°C, and Sn₂Sb₂Se₅ – with incongruent melting at 563°C. Solid solutions based on both crystal modifications of SnSe were detected. The authors of [19] showed a formation of a single ternary compound, $SnSb_2Se_4$ in the SnSe - Sb_2Se_3 system. This compound crystallized in an orthorhombic structure (Sp.Gr. Pnnm) with lattice parameters a = 26.610 Å, b = 21.066 Å and s = 4.0423 ÅAccording to [21], the Sn₂Sb₂Se₅ compound also had an orthorhombic structure (Sp.Gr. Pnnm, a = 35.16 Å, b = 25.96 Å, c =4.14 Å). We have not found data on the crystal structure of a compound with the composition $Sn_2Sb_6Se_{11}$.

In this paper, we present a new refined variant of the T - x diagram of the SnSe - Sb₂Se₃ quasi-binary system and the comparative analysis with literature data attached.

The starting compounds of the reviewed system were explored in detail. The SnSe compound melts congruently at 880°C [22] and crystallizes in an orthorhombic structure (Sp.Gr. Pcmn) with lattice parameters a = 4.44175, b =

4.15096, c = 11.49417 [23]. The Sb_2Se_3 compound also melts congruently at $600^{\circ}C$ [22] and crystallizes in an orthorhombic structure (Sp.Gr. Pnma, a = 11.7808 Å, b = 3.9767 Å and c = 11.6311 Å [24].

Experimental part

Materials and synthesis

Compounds SnSe and Sb₂Se₃ were synthesized using high-purity antimony (Sb-00002, 99.999%), tin (Sn-00005, 99.999%), selenium (Se-00002, 99.999%) purchased from Materials Evochem Advanced **GMBH** (Germany). Stoichiometric mixtures of elementary components were placed in a quartz ampoule which was evacuated to a residual pressure of $\sim 10^{-2}$ Pa. The synthesis of SnSe was carried out in a dual-zone inclined furnace. The temperature of the lower "hot" zone was 930 °C, and that of the upper "cold" zone was up to 630 °C which was somewhat lower than the boiling point of selenium (685 °C) [25]. Sb₂Se₃ was synthesized in a one-zone furnace at 650°C.

The identity of both synthesized compounds was controlled by DTA and XRD. The obtained melting points and crystal lattice parameters within deviation (\pm 2 °C and \pm 0.0003 Å) were in good agreement with the

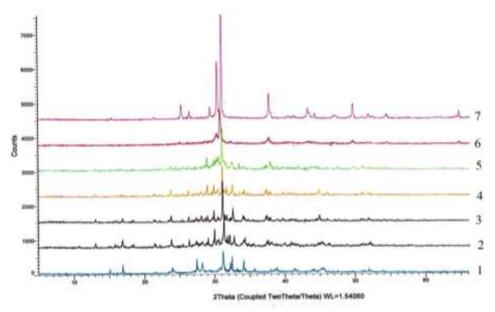
literature data.

Alloys of the studied system were prepared by fusion of the starting compounds at various ratios in evacuated quartz ampoules followed by homogenizing annealing at 450 °C for ~ 500 h and quenching into cold water.

Analysis

For the analysis of samples, differential thermal analysis (DTA) and X-ray powder diffraction (XRD) were used. DTA was performed using the NETZSCH 404 F1 Pegasus system with the heating rate reaching 10 °C min⁻¹. Temperatures of thermal effects were taken mainly from heating curves. Accuracy of temperature measurement was \pm 2°C.

Powder X-ray diffraction patterns were obtained on Bruker D2 Phaser diffractometer (Cu $K\alpha_1$ radiation) at a room temperature. The X-ray images were indexed using Topas V3.0 software Bruker.


Results and its discussion

Results of XRD of annealed samples are shown in Fig. 1. As can be seen, samples containing 33.3; 50 and 60 mol. % Sb₂Se₃ had diffraction patterns that differed from original components. On the other hand, samples containing 50 and 60 mol.% Sb₂Se₃ had the same qualitatively diffraction patterns. This confirms the existence of individual phases with compositions Sn₂Sb₂Se₅ SnSb₂Se₄ and Sn₂Sb₆Se₁₁ and shows that the latter two are isostructural to be within the homogeneity region of some intermediate phase of variable

composition.

The diffraction patterns of samples containing 20 and 80 mol.% Sb_2Se_3 were two-phase mixtures of $SnSe + Sn_2Sb_2Se_5$ and $Sn_2Sb_6Se_{11} + Sb_2Se_3$, respectively. A comparison of diffraction patterns with published data [18, 20, 21] shows that they were identical to the known $Sn_2Sb_2Se_5$ and $SnSb_2Se_4$ compounds. Types and parameters of crystal lattices of intermediate phases were determined on the basis of the powder diffractograms:

 $Sn_2Sb_2Se_5$: Sp.Gr. Pbnm a = 35.08(28) Å, b = 25.87(22) Å, c = 4.09 (6) Å. $SnSb_2Se_4$: Sp.Gr. Pnnm a = 26.605 (25) Å, b = 21.049 (20) Å, c = 4.0385 (5) Å.

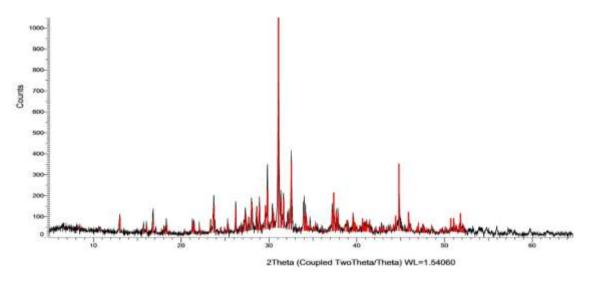


Fig. 1. X-ray powder diffraction patterns for alloys of the SnSe - Sb_2Se_3 system.1- Sb_2Se_3 ; 2- 80 mol% Sb_2Se_3 ; 3- 60 mol% Sb_2Se_3 ; 4- 50 mol% Sb_2Se_3 ; 5- 33.3 mol% Sb_2Se_3 ; 6- 20mol% Sb_2Se_3 ; 7-SnSe

The powder diffraction pattern (Fig. 2) of a sample with a composition of 60 mol% Sb_2Se_3 ($Sn_2Sb_6Se_{11}$) was also completely indexed based on the crystallographic data of $SnSb_2Se_4$: a = 26.604 (25), b = 21.068 (25), c = 3.8265 (5).

A comparison of crystal lattice

parameters of phases with the $SnSb_2Se_4$ μ $Sn_2Sb_6Se_{11}$ compositions shows that increase of the Sb content led to a significant decrease in the parameter c which was due to the crystallographic radii of Sn^{2+} (1.02 Å) [26] and Sb^{3+} (0.76 Å) [27]

Fig. 2 Powder XRD pattern for the alloy with composition 60 mol% Sb_2Se_3 ($Sn_2Sb_6Se_{11}$). Red lines – data of [20] for the $SnSb_2Se_4$ compound.

A phase diagram of the $SnSe-Sb_2Se_3$ system was constructed based on the DTA results with due regard for RFA data (Fig. 3). As can be seen from the Fig.3, the system is

quasibinary and has two intermediate phases that decompose according to the peritectic reaction. The compound $Sn_2Sb_2Se_5$ crystallizes at 598 °C according to the

 $L + \alpha' \leftrightarrow Sn_2Sb_2Se_5$

reaction. (α' is a solid solution based on a high-temperature modification of SnSe).

The second intermediate phase (γ) had a wide (48-60 mol.% Sb₂Se₃) region of homogeneity and crystallized at 560 °C by

$$L + Sn_2Sb_2Se_5 \leftrightarrow \gamma$$

Compositions of peritectic points p₁ and p₂ were 40 and 65 mol.% Sb₂Se₃, respectively.

An eutectic with coordinates 72 mol.%

 Sb_2Se_3 and 545 °C was found in the system. Based on both initial components, there were limited regions of solid solutions (α' , α - and β -phases).

Thermal effects reflecting the phase transition in SnSe-based solid solutions were not found on the DTA curves. Apparently, these effects overlap with more intense peaks of the peritectic reaction (598 °C).

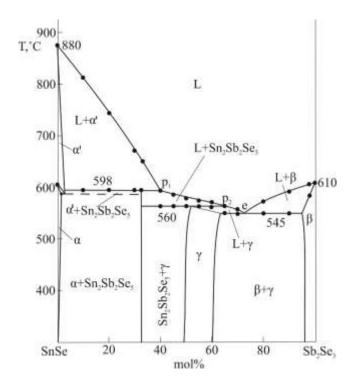


Fig. 3. Phase diagram of the SnSe- Sb₂Se₃ system

The T - x diagram differed significantly from the results of [17-19]. In contrast to the data of these works, all three compounds previously indicated in the literature are reflected in Fig. 3. We found that phases $SnSb_2Se_4$ and $Sn_2Sb_6Se_{11}$ were isostructural within the homogeneity region of the γ phase which melts incongruently. The presence of a distectic point with a composition of 60 mol%

Sb₂Se₃ (Sn₂Sb₆Se₁₁) indicated in [17, 18] was not confirmed by us. In addition, according to our data, the temperature of the peritectic reaction of the formation of the Sn₂Sb₂Se₅ compound is 598°C, which is 35°C higher than that indicated in [18]. There are also discrepancies in the composition of the peritectic (p₁) and eutectic (e) points.

Conclusion

A new scheme of phase equilibria in the quasi-binary SnSe - Sb₂Se₃ system was obtained to differ from those previously reported in the literature [17-19]. According to our data, this system is characterized by the formation of two intermediate phases, melting with

decomposition by peritectic reactions at 598° C ($Sn_2Sb_2Se_5$) and 560° C (γ -phase). The latter has a wide homogeneity region (48-60 mol% Sb_2Se_3), which includes the ternary compounds $SnSb_2Se_4$ and $Sn_2Sb_6Se_{11}$ previously mentioned in the literature.

References

- 1. Shevelkov A.V. Chemical aspects of the design of thermoelectric materials. *J. Russ. Chem. Rev.* 2008, vol. 77, pp. 1–19.
- 2. Kanatzidis M.G., Ohta M., Chung D.Y., Kunii M. Low lattice thermal conductivity in Pb₅Bi₆Se₁₄, Pb₃Bi₂S₆, and PbBi₂S₄: Promising thermoelectric materials in the cannizzarite, lillianite, and galenobismuthite homologous series. *J. of Mater. Chem. A*, 2014, issue 47, pp. 20048-20058. DOI: 10.1039/c4ta05135a
- 3. Manish K., Athorn V., Tosawat S., and Jeon G. H. Enhancement in thermoelectric properties of cubic Ge₂Sb₂Te₅ thin films by introducing structural dicorder. *Energy Technol.* 2016, vol.4, pp. 375-379. DOI: 10.1002/ente.201500296
- 4. Jae N.K., Massoud K., and Ji-Hoon S. Optimized ZT of Bi₂Te₃-GeTe compounds from first principles guided by homogeneous data. *Physical Review*. 2016, vol. 93, issue7, 075119.
- Zemskov V.S., Shelimova L.E., Konstantinov P.P., Avilov E.S., Kretova M.A., Nikhezina I.Yu. Physical—chemical and thermoelectric properties of complex bismuth and lead chalcogenides and their solid solutions. *Inorg. Mater.: Appl. Res.* 2012, vol. 3, pp. 61–69. DOI: 10.1134/ S2075113314010158
- 6. Shvets I.A., Klimovskikh I.I., Aliev Z.S., Babanly M.B., Sánchez-Barriga J., Krivenkov M., Shikin A.M., Chulkov E.V. Impact of stoichiometry and disorder on the electronic structure of the PbBi₂Te₄–xSex topological insulator. *Physical Review* B, 2017, vol. 96, issue 23, p. 235124
- Papagno M., Eremeev S.V., Fujii J., Aliev Z.S., Babanly M.B., Mahatha S.K., Chulkov E.V. Multiple coexisting dirac surface states in three-dimensional topological insulator PbBi₆Te₁₀. ACS Nano. 2016, 10(3), pp. 3518–3524. DOI:10.1021/acsnano.5b07750
- 8. Shvets I.A., Klimovskikh I.I., Aliev Z.S., Babanly M.B., Zúniga F.J., Sánchez-Barriga J., Krivenkov M., Shikin A.M., Chulkov E.V., Surface electronic structure of the wide band gap topological insulator PbBi₄Te₄Se₃. *Phys. Rev.* B, 2019, vol. 100, p.195127

- 9. Pacile D., Eremeev S.V., Caputo M., Pisarra M., De Luca O., Grimaldi I., Fujii J., Aliev Z.S. Babanly M.B., Vobornik I., Agostino R.G. Goldoni A., Chulkov E.V., and Papagno M. Deep insight into the electronic structure of ternary topological insulators: A comparative study of PbBi₄Te₇ and PbBi₆Te₁₀. *Physica status solidi* (RRL) *Rapid Research Letters*. 2018, pp. 1800341-8.
- 10. Adam A.B., Sakrani S., Wahab Y. Glassformation region of ternary Sn-Sb-Se-based chalcogenide glasses. *Mater. Sci.* 2005, vol. 40, pp.1571-1576.
- 11. Min A., Kwang-sik J., Seungjong P., Sungjin P., Hoon J., Jeonghwa H. Effects of resonant bonding and structural distortion on phase change properties of Sn₂Sb₂Se₅. *Mater. Chem. C.* 2017, pp.1-27. DOI: 10.1039/C7TC01135K
- 12. Chandera Ravi and Thangarajb R. Optical and transport properties of as prepared and annealed Te-substituted Sn-Sb-Se thin films. *Mater. Sci. Forum.* 201. Vols 663-665, pp. 16-24. DOI:10.4028/www.scientific.net/MSF.663-665.16
- 13. Babanly M.B., Chulkov E.V., Aliev Z. S., Shevel'kov A.V., and Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalkogenides. *Russ. J. Inorg. Chem.* 2017, vol. 62, no. 13, pp. 1703–1729.
- 14. Zlomanov V. P., Khoviv A.M. and Zavrazhnov A.Yu. Physicochemical analysis and synthesis of nonstoichiometric solids. In: InTech. *Mater. Sci. Advanced Topics*. 2013, pp.103-128
- 15. Babanly M.B., Mashadiyeva L.F., Babanly D.M., Imamaliyeva S.Z., Tagiyev D.B., Yusibov Y.A. Some aspects of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenid systems by the EMF method. *Russ J. Inorg. Chem*, 2019, no. 13, (Q3; IF 0.82)
- 16. Imamaliyeva S.Z., Babanly D.M., Tagiev D.B., Babanly M.B. Physicochemical Aspects of Development of

- Multicomponent Chalcogenide Phases Having the Tl₅Te₃ Structure: A Review. *Russ.J.Inorg.Chem.* 2018, no. 13, pp.1703-1730.
- 17. Wobst M. Der quasibinare schnitt SnSe-Sb₂Se₃. *Less-Common Metals*. 1967, vol.14, pp. 77-81.
- 18. Gospodinov G.G., Odin I.N., Novoselova A.V. Investigation of the interaction of SnSe with Sb₂Se₃. *Neorg. Mater. Inorganic Materials*. 1975, vol. 11, no.7, pp. 1211-1214. (In Russian).
- 19. Jui-Shen Chang and Sinn-Wen Chen. Liquidus projection and isothemal section of the Sb-Sn-Se System. *Metals and Mateials Society*. 2017, vol.4, pp.89-100.
- 20. Smith P.K., Parise J.B. Structure determination of SnSb₂S₄ and SnSb₂Se₄ by high-resolution electron microscopy. *Acta Crystallogr. Sec.* 1985. B, vol. 41, p.84.
- 21. Mukherjee A. *Jpn J. of Appl. Physics*. 1982, vol. 20, p. 681.
- 22. Binary Alloy Phase Diagrams. Ed. Massalski T.B., Seconded edition. ASM International, *Materials Park*, 1990, 3589 pp.

- 23. Sist M., Zhang J. Iversen B.. Crystal structure and phase transition of thermoelectric SnSe Acta Crystallogr. 2016, vol. 72(3), pp. 310-316. DOI 10.1107/S2052520616003334
- 24. Hobson T. D., Hutter C., Birkett O.S., Veal T.D., Durose K. Growth and characterization of Sb₂Se₃ single crystals for fundamental studies. IEEE 7th World Conference on Photovoltaic Energy Conversion 2018. 0818.(WCPEC) DOI:10.1109/pvsc.2018.8547622
- 25. Emsley J. Elements. Moscow: Mir Publ., 1993, p. 256.
- 26. Zewen Xiao., Hechang Lei., Xiao Zhang., Yuanyuan Zhou., Hideo Hosono., Toshio Kamiya. Ligand-Hole in [SnI₆] Unit and Origin of Band Gap in Photovoltaic Perovskite Variant Cs₂SnI₆. *Bull. Chem. Soc. Jpn.* 2015, vol. 88, pp. 1250–1255. doi:10.1246/bcsj.20150110.
- 27. Shannon R.D. Revised effective ionic radii and sys- tematic studies of interatomic distances in halides and chalcogenides. *Acta Cryst*. Section A, 1976, p. 751.

SnSe-Sb₂Se₃ SİSTEMİNİN FAZA DİAQRAMININ DƏQİQLƏŞDİRİLMƏSİ

E.N. İsmayılova^{1,*}, İ.B. Bəxtiyarlı¹, M.B. Babanlı^{1,2}

¹AMEA akademik M. Nağıyev adına Kataliz və Qeyri-üzvi Kimya İnstitutu Bakı AZ 1143, H.Cavid pr.113 ²Bakı Dövlət Universiteti, Z.Xəlilov 23, AZ 1148 Bakı e-mail: *Ismayilova818@mail.ru

Acar sözlər: $SnSe - Sb_2Se_3$ sistemi, faza diaqramı, evtektika, qalay və sürmə selenidləri, bərk məhlullar

УТОЧНЕНИЕ ФАЗОВОЙ ДИАГРАММЫ CUCTEMЫ SnSe - Sb₂Se₃

Э.Н. Исмайлова^{1, *}, И.Б. Бахтиярлы¹, М.Б. Бабанлы^{1,2}

¹Институт Катализа и Неорганической Химии им. акад. М. Нагиева Национальной АН Азербайджана, пр. Г. Джавида, 113, Баку AZ-1143

² Бакинский Государственный Университет, ул. 3.Халилова, 23, AZ-1148, Баку, e-mail: *Ismayilova818@mail.ru*

Учитывая противоречивость имеющихся литературных данных, фазовые равновесия в системе SnSe - Sb_2Se_3 повторно изучены методами ДТА и $P\Phi A$, построен новый вариант T-х диаграммы. Установлено, что в системе образуются тройное соединение $Sn_2Sb_2Se_5$ и промежуточная γ -фаза с областью гомогенности 48-60 мол% Sb_2Se_3 , плавящихся с разложением по перитектическим реакциям при 598 C ($Sn_2Sb_2Se_5$) и 560 C (γ -фаза). Эта область включает стехиометрические составы ранее указанных в литературе тройных соединений $SnSb_2Se_4$ и $Sn_2Sb_6Se_{11}$. Проведен сравнительный анализ полученных результатов с литературными данными.

Ключевые слова: система $SnSe - Sb_2Se_3$, фазовая диаграмма, эвтектика, селениды олова и сурьмы, твердые растворы.