

UDC 548.3

SYNTHESIS, CHARACTERIZATION, AND STUDY OF THE CRYSTALLINE PROPERTIES OF ASTERISM COMPOUNDS

Dardaa A. Ibrahim, Hanaa K. Salih

Department of Chemistry, College of Science, Tikrit University, Tikrit, Iraq email: <u>dardaa@tu.edu.iq</u>

> Received 15.05.2024 Accepted 04.07.2024

Abstract: This study involves the synthesis of asterism compounds (D1-D6) through the reaction of 1 mole of benzene 1,3,5-triol with 3 moles of prepared pentacyclic ring ester derivatives, dissolved in absolute ethanol. The validity of the compound structures was confirmed using physical and spectroscopic methods such as infrared spectroscopy, and proton nuclear magnetic resonance spectroscopy. Additionally, melting points and purity were determined, and reaction progress was monitored by Thin-Layer Chromatography (TLC). The liquid crystal phases of certain prepared compounds were examined using a polarizing optical microscope (POM).

Keywords: Asterism compounds, Esters, Liquid crystals.

DOI: 10.32737/2221-8688-2024-4-478-488

1. Introduction

Liquid crystals represent a transitional state between the irregular liquid state and the ordered crystalline solid state [1, 2]. Liquid crystals were described as the fourth state of matter and were called fluid crystals or floating crystals [3]. Liquid crystals exhibit a state intermediate between the solid phase, where molecular motion is constrained and molecular organization is complete in terms of position and direction [4], and the isotropic or liquid phase [5, 6], where molecular motion is free and this phase exhibits random organization, despite displaying properties attributable to both liquid and solid states, they possess unique properties not present in either liquid or solid states [7]. Liquid crystals are a type of fluid containing a specific system in which molecules are arranged [8]. This arrangement makes the substance anisotropic, meaning its physical properties are not present in all directions [9]. Classification of different phases of thermotropic liquid Crystals Nematic-thread like molecules, parallel arrangement and Discotic -disk like molecules and Smectic-soap like smectic A molecules with

transitional/ rotational motion and smectic C molecules arrangement in layers parallel tonormal and Chiral-also known as cholesteric [10].

The most distinguishing feature of these molecules is their possession of flat shapes resembling sheets or elongated shapes resembling rods, and with the assistance of these shapes, the molecules arrange themselves parallel to each other [11, 12]. Liquid crystals have numerous applications in medicine and industry, including common applications such as their use in watches, computers, television screens, and electronic games [13, 14].

This study tries to synthesize asterism compounds (D1-D6) via a meticulous organic reaction. The significance of this process lies in the strategic choice of benzene 1,3,5-triol as the central core due to its symmetrical structure and reactivity, which facilitates optimal interaction with the pentacyclic ester moieties. Dissolving the reactants in absolute ethanol ensures a high-purity solvent environment that minimizes potential side reactions and maximizes product

yield. This methodological approach not only underscores the precision required in forming complex organic compounds but also highlights ethanol role as an efficient solvent in promoting effective esterification reactions. The resulting asterism compounds may exhibit unique chemical properties and potential applications across various fields such as pharmaceuticals,

materials science, and supramolecular chemistry. By carefully controlling reaction conditions and leveraging the inherent reactivity of benzene triol and pentacyclic esters, this study will advances our ability to design and synthesize novel compound architectures with tailored functionalities.

2. Experimental part

2.1. Material and Devices used.

The chemical materials are collected from Fluka, Aldrich, and BDH and used without further purification. The melting points were measured using Electrothermal Melting 9300. Bruker FT-IR 8400S **Apparatus** spectrophotometer with a scale of (400-4000) cm⁻¹ by KBr disc. ¹H-NMR spectra on Bruker instruments running at 400 MHz. Thin Layer Chromatography (TLC) was performed using Fluka silica gel plates with 0.2 mm thickness, activated with fluorescent silica gel G, and visualization was achieved using UV light.

2.2. Synthesis of Asterism Compounds (discotic) (D1-D6)

In a 50 mL round-bottom flask containing

20 mL of absolute ethanol, 0.001 mol (0.5 g) of benzene 1,3,5-triol is dissolved to this 0.003 mol of prepared thiazolidinone ring esters derivatives dissolved in absolute ethanol is added. After the addition is complete, the reaction mixture is refluxed for 7 hours. The progress of the reactions was monitored using thin-layer chromatography (TLC) and iodine staining. Upon completion of the reflux period, the mixture was cooled and stirred for an additional hour. Precipitate formation was noticed, collected, dried, and recrystallized using ethanol [18, 19]. Table (1) show some physical properties of the synthesized compounds.

Table 1. Yield ratios and some physical properties of compounds (D1-D6).

Comp.	Molecular Formula	X	Yields %	Rf	M.P. OC	Colour
D1	$C_{54}H_{39}N_3O_9S_3$	Н	82	0.58	205-208	Yellow
D_2	$C_{54}H_{36}Cl_3N_3O_9S_3$	Cl	70	0.54	188-190	Orange
D_3	$C_{54}H_{36}Br_3N_3O_9S_3$	Br	68	0.54	118-120	Orange
D_4	$C_{54}H_{36}N_6O_{15}S_3$	NO_2	67	0.54	199-202	Orange
D_5	$C_{57}H_{45}N_3O_{12}S_3$	OCH ₃	59	0.64	173-175	Orange
D_6	$C_{57}H_{45}N_3O_9S_3$	CH ₃	72	0.61	194-196	Orange

X represent replacement functional group (Figure 1) Compounds (D1-D6) are newly synthesized for the first time M.P. indicates melting points

2.3. Study of Liquid Crystal Phases

The liquid crystal phases of certain prepared compounds were examined using a polarizing optical microscope (POM) carried with an electric heater. The microscope was also carried with a high-resolution camera and a heat-resistant lens to obtain high-precision images. The compound under examination,

whose liquid crystal phases were to be investigated, was placed in the liquid crystal phase measurement device, and the compound was heated to its melting point. Subsequently, the compound was cooled, and this process was repeated several times to obtain liquid crystals with clearer geometric shapes [20, 21].

3. Results and Discussion

Asterism Compounds (discotic) (D1-D6) benzene to produce thiazolidinone (Fig. 1). react by 3 moles at 1,3,5-triyl with 1 mole

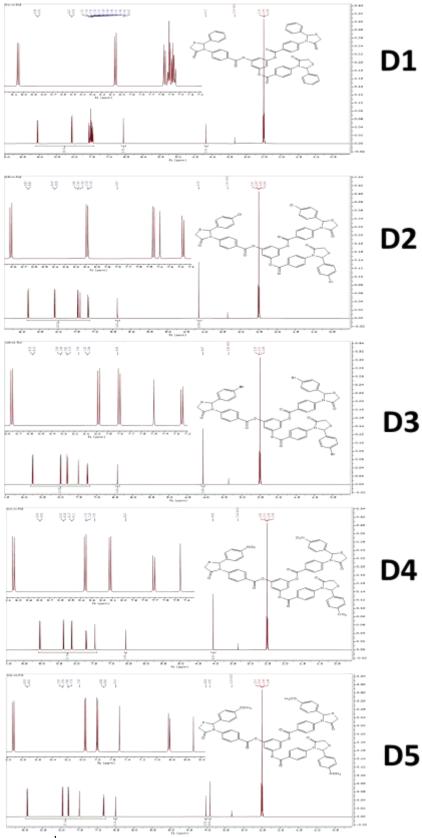
Fig. 1. The structural formula of the prepared compounds (D1-D6). Reactant (discotic, left side of the equation), productant (thiazolidinone, right side of the equation).

3.1. Properties of Compounds (D1-D6) by FT-IR

The infrared spectrum of compounds (D1-D6) noted that an absorption band appeared in the range (3010-3065) cm⁻¹, which belongs to the stretching of the aromatic (CH) bond. Also, an absorption band appeared in the range (1681-

1696) cm⁻¹ due to the stretching of the carbonyl (C=O) ester bond and an absorption band appeared in the range (1520-1600, 1412-1459) cm⁻¹ due to the stretching of the (C=C) ring bond, and an absorption band appeared in the range (659-696) cm⁻¹ is due to the stretching of the (C-S) bond, [22, 23] (Table 2).

Table 2. FT-IR absorption results for oxazepine derivatives (D1-D6) (cm⁻¹)


Comp.	-X	vC-H Arom.	vC=O ester	v C=C		vC-S	Others
				ring			
D1	Н	3021	1684	1520	1413	696	
D2	Cl	3065	1686	1561	1412	674	C-Cl 782
D3	Br	3030	1696	1550	1459	681	C-Br 654
D4	NO_2	3025	1684	1573	1454	668	NO ₂ 1538, 1293
D5	OCH ₃	3048	1686	1600	1444	659	C-H alip. 2993
D6	CH ₃	3010	1681	1593	1425	694	C-H alip.2953

3.2. Characterization of compounds (D1-D6) by ¹H-NMR

The solvent (DMSO-d⁶) was used for ¹H-NMR study of all six compounds (D1-D6).

When studying the ¹H-NMR spectrum of the compound [D1], it was observed that a multiple signal in the range (7.45-9.06) ppm is attributed to the protons of the aromatic rings, a single signal appears at the chemical shift (6.57) ppm due to the proton of three groups (CH) in

the thiazolidinone ring, and a single signal appears at the chemical shift (4.17) ppm due to the protons of tree groups (CH₂) in the thiazolidinone ring, and the appearance of a single signal upon chemical shift (3.34) ppm is attributed to the protons of water (HDO), and a signal appears at the chemical shift (2.48-2.50) ppm is attributed to the protons of the solvent (DMSO-d⁶) [24,25] (Fig. 2).

Fig. 2. ¹H-NMR spectrum of the compound (D1 to D5).

The ¹H-NMR study of the compound [D2] shows that a multiple signal in the range (7.16-8.83) ppm is attributed to the protons of the

aromatic rings, a single signal appears at the chemical shift (6.37) ppm due to the proton of three groups (CH) in the thiazolidinone ring,

and a single signal appears at the chemical shift (4.14) ppm due to the protons of tree groups (CH₂) in the thiazolidinone ring, and the appearance of a single signal upon chemical displacement (3.35) ppm is attributed to the protons of water (HDO), and a signal appears at the chemical shift (2.48-2.51) ppm is attributed to the protons of the solvent (DMSO-d⁶), [26,27] (Fig. 2).

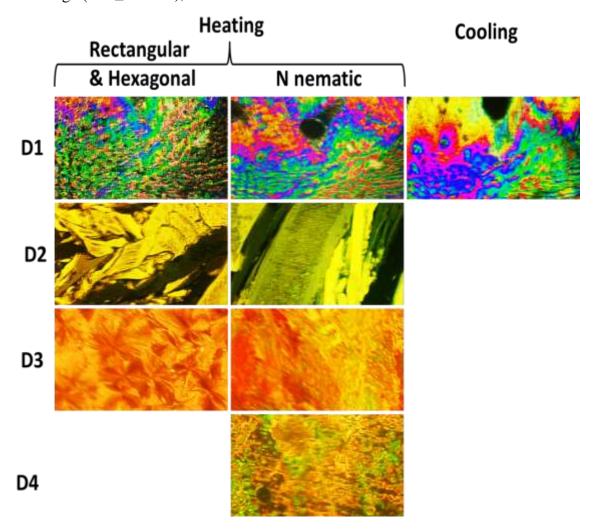
The ¹H-NMR spectrum of the compound [D3] shows that multiple signals in the range (7.24-8.76) ppm is attributed to the protons of the aromatic rings, a single signal appears at the chemical shift (6.42) ppm due to the proton of three groups (CH) in the thiazolidine ring, and a single signal appears at the chemical shift (4.07) ppm due to the protons of tree groups (CH₂) in the thiazolidine ring, and the appearance of a single signal upon chemical displacement (3.36) ppm is attributed to the protons of water (HDO), and a signal appears at the chemical shift (2.48-2.53) ppm is attributed to the protons of the solvent (DMSO-d⁶) [28, 29] (Fig. 2).

The ¹H-NMR spectrum of the compound [D4] reveals that multiple signals in the range (7.46-9.05) ppm is attributed to the protons of the aromatic rings, a single signal appears at the chemical shift (6.57) ppm due to the proton of three groups (CH) in the thiazolidine ring, and a single signal appears at the chemical shift (4.05) ppm due to the protons of tree groups (CH₂) in the thiazolidine ring, and the appearance of a single signal upon chemical displacement (3.34) ppm is attributed to the protons of water (HDO), and a signal appears at the chemical shift (2.49-2.52) parts per million is attributed to the protons of the solvent (DMSO-d⁶) [30, 31] (Fig. 2).

When studying the ¹H-NMR spectrum of the compound [D5], it was observed that a multiple signal in the range (6.82-9.38) ppm is attributed to the protons of the aromatic rings, a single signal appears at the chemical shift (6.51) ppm due to the proton of three groups (CH) in the thiazolidinone ring, and a single signal appears at the chemical shift (4.03) ppm due to the protons of tree groups (CH₂) in the thiazolidinone ring, and a single signal appears at the chemical shift (3.92) ppm due to the proton of tree groups (CH₃), and the appearance of a single signal upon chemical displacement

(3.33) ppm is attributed to the protons of water (HDO), and a signal appears at the chemical shift (2.48-2.51) parts per million is attributed to the protons of the solvent (DMSO-d⁶), [32,33] (Fig. 2).

The protons of the aromatic rings are responsible for a multiple signal in the range of 7.02-8.85 ppm, according to the chemical [D6's] 1H-NMR spectra, and , a single signal appears at the chemical shift (6.51) ppm due to the proton of three groups (CH) thiazolidinone ring, and a single signal appears at the chemical shift (4.04) ppm due to the protons of tree groups (CH₂) thiazolidinone ring, and the appearance of a single signal upon chemical displacement (3.34) ppm is attributed to the protons of water (HDO), and a signal appears at the chemical shift (2.49-2.51) ppm is attributed to the protons of the solvent (DMSO-d⁶), and a single signal appears at the chemical shift (2.22-2.25) ppm due to the proton of tree groups (CH₃) [34, 35].


3.3. Diagnosis and Discussion of Liquid Crystal Behavior

One of the pivotal factors driving the study of liquid crystal behaviour in synthesized compounds is the unique physical and chemical of these liquid crystalline characteristics liquid crystal compounds. Therefore, the behaviour compounds of prepared investigated using polarizing optical microscopy (POM) equipped with an electric heater. This involved taking a quantity of the material to be studied and placing it on a glass slide, then observing the thermal transitions of liquid crystalline phases during heating. Subsequently, the nature of these transitions was identified, and the thermal stability of each transition was studied. To understand the nature of these transitions and their thermal stability, it is essential to grasp some general concepts about the nature of the prepared compounds and the probability of liquid crystalline phases appearing in them [36, 37].

Organic compounds were prepared, one with a rod-like shape and the other discotic, both being morphologies indicative of liquid crystalline phases. Mesogenic units were prepared from a molecular core consisting of more than two aromatic rings connected by groups enhancing electronic delocalization

along the molecular axis, represented by groups (-C=N, -OC=O). The liquid crystal behaviour of prepared compounds was monitored using POM to determine the liquid crystalline transitions and to study the nature of these transitions and their thermal stability. It was observed that most discotic compounds exhibited liquid crystalline transitions with high thermal stability, depending on the nature of the mesogenic units for each compound [38, 39]. When studying the liquid crystal behaviour of compounds under investigation, it was noticed that compounds with rod-like mesogenic units did not exhibit liquid crystalline properties, possibly due to the ratio of molecular length to width not falling within the range ($L/d \ge 4.0-6.4$), where d is the

average molecular diameter and L is the molecular length [40,41]. The appearance of discotic liquid crystal phases in compounds might be attributed to the mesogenic unit's disclike structure possessing a disparate radial axis, with the molecular diameter significantly larger than the longitudinal axis represented by the disc thickness [42]. Therefore, the appearance of liquid crystalline properties in discotic compounds is attributed to the presence of a proper structure of mesogenic units composed of the molecular core containing more than two aromatic rings linked by bonds enhancing electronic delocalization along the molecular axis.

Fig. 3. Heating cooling phases of liquid crystal of the generated compound D1 to D4 showing N nematic, rectangular, and hexagonal shapes.

Furthermore, the presence of polar terminal groups increasing terminal bonding

forces and side attraction forces between mesogenic unit molecules favour the appearance of rectangular and homogeneous liquid crystal phases. Additionally, the presence of polar terminal groups increases terminal bonding forces favoring the appearance of nematic liquid crystal phases in the compound. It was observed that the thermal stability of the nematic liquid crystal phase (ΔN) increases with the presence of polar terminal groups, as the presence of groups like (NO2, OCH3) at the molecule's end provides greater thermal stability to the nematic phase compared to groups like (H, CH₃) [43, 44]. Studying the produced compounds' liquid characteristics revealed crystal that

transitions were monotropic and only happened when the compounds heated, except in compound (D1), where they appeared during both heating and cooling, indicating an enantiotropic property [45, 46]. Table (3) illustrates the transition temperatures for the compounds under study, and (Figure 3) depicts images of the liquid crystalline compounds obtained.

Studying the produced compounds' liquid crystal characteristics revealed that the transitions were monotropic and only happened when the compounds heated.

Table 3. Transition temperatures and liquid crystal phases of prepared compounds.

No.	Cr	$\hat{\mathbf{S}}_{\mathbf{A}}$	S_{C}	N	ΔS_{A}	ΔS_{C}	ΔΝ
	Cr	Col.h	Col.r	N	Δ Col.h	Δ Col.r	ΔN
D1	203		241	258		38	17
	208			252			44
D2	180		219	241		39	22
D3	119	134		159	15		25
D4	193			226			33

Cr=Crystal phase

 S_A , S_C , = Smectic phase

N= Nematic phase

4. Conclusions

The prepared compounds were of high purity and this was confirmed by various spectroscopic examinations. The increase in the number of aromatic rings led to an increase in melting points. The absence of crystal phases in some compounds may be due to the effect of increasing the number of aromatic rings that increased the hardness of the molecule, which prevented the appearance of crystal phases as well as compensated aggregates on the rings, which increase the width of the molecule and thus not align.

References

- Stephen M.J., Straley J.P. Physics of liquid crystals // Reviews of Modern Physics, 1974, V. 46(4), p. 617. https://doi.org/10.1103/RevModPhys.46.61
- 2. Alikhanova A.I., Mamedova A.F., Ibadov E.A., Nurullayeva D.R. Preparation and study of copolymer of N, N'-(P-phenylene) bismaleimide with allyl ester of salicylic acid // Chemical Problems, 2023, V. 21(4), p. 361-369. https://doi.org/10.32737/2221-8688-2023-4-361-369.
- 3. Binnemans K. Ionic liquid crystals // Chemical Reviews, 2005, V. 105(11), p.

- 4148-204. https://doi.org/10.1021/cr0400919.
- 4. Kusabayashi S., Takenaka S. Structure and Properties of Liquid Crystals // Journal of Synthetic Organic Chemistry, 1984, V. 42(1), p. 2-12. https://doi.org/10.5059/yukigoseikyokaishi. 42.2.
- 5. Aslanova E.T., Mamedov E.T, Rashidova M.N., Garayeva A.A., Atakishiyeva V.O. Synthesis of new thermostable polyhydroxyester on the basis of 2-hydroxypropyl-1, 3-bis-carboxymethylesterosulfoimide of

- saccharin-6-carboxylic acid // Chemical Problems, 2023, V. 21(2), p. 140-145. DOI: 10.32737/2221-8688-2023-2-140-145.
- Huseynov K.Z., Aliyev P.A., Mirzoyeva M.A., Eyvazova I.M., Aliyev N.A. Synthesis of alkoxycarbonylmethyl esters of thioacetic and thiobenzoic acids and their investigation as additives to lubricating oils // Chemical Problems, 2023, V. 21(3), p. 294-300. DOI: 10.32737/2221-8688-2023-3-294-300.
- 7. Li S.L., Chen Z.Y., Chen P., Hu W., Huang C., Li S.S., Hu X., Lu Y.Q., Chen L.J. Geometric phase-encoded stimuli-responsive cholesteric liquid crystals for visualizing real-time remote monitoring: humidity sensing as a proof of concept // Light: Science & Applications, 2024, V. 13(1), 27. https://doi.org/10.1038/s41377-023-01360-7.
- 8. Máthé M.T., Himel M.S., Adaka A., Gleeson J.T., Sprunt S., Salamon P., Jákli A. Liquid Piezoelectric Materials: Linear Electromechanical Effect in Fluid Ferroelectric Nematic Liquid Crystals // Advanced Functional Materials, 2024, V. 34(18), 2314158. https://doi.org/10.1002/adfm.202314158.
- Wang D., Li Y.L., Chu F., Li N.N., Li Z.S., Lee S.D., Nie Z.Q., Liu C., Wang Q.H. Color liquid crystal grating based color holographic 3D display system with large viewing angle // Light: Science & Applications, 2024, 13(1), 16. https://doi.org/10.1038/s41377-023-01375-0.
- Rajni B., Rakesh S., Bharti K., Reecha M., Simona C. (). The Prospective of Liquid Crystals in Nano formulations for Drug Delivery Systems // Journal of Molecular Structure, 2021, V. 1245, 131117. 10.1016/j.molstruc.2021.131117.
- 11. Wang D., Liu S., Wei W., Guo H., Zhang Y., Peng H., Zhou X., Xie X. Holographic Plastics with Liquid Crystals // Macromolecules, 2024, V. 57(6), p. 2557-73. https://doi.org/10.1021/acs.macromol.3c02 011.
- 12. Zhang C., Chen G., Zhang K., Jin B., Zhao Q., Xie T. Repeatedly Programmable

- Liquid Crystal Dielectric Elastomer with Multimodal Actuation // Advanced Materials, 2024, V. 36(16), 2313078. https://doi.org/10.1002/adma.202313078.
- 13. Durur H., Yokuş A., Duran S. Investigation of exact soliton solutions of nematicons in liquid crystals according to nonlinearity conditions // International Journal of Modern Physics B, 2024, V. 38(4), 2450054. https://doi.org/10.1142/S021797922450054
- 14. Bisoyi H.K., Kumar S. Discotic nematic liquid crystals: science and technology // Chemical Society Reviews, 2010, V. 39(1), p. 264-85. DOI: 10.1039/B901792P.
- 15. Dalaf A.H. Synthesis and Characterization of Some Quartet and Quinary Hetero cyclic Rings Compounds by Traditional Method and Microwave Routes Method and Evaluation of Their Biological Activity // M. Sc. Thesis, Tikrit University, Tikrit, Iraq, 1-94.
- 16. Jebur M.H., Albdere E.A., Al-Hussainawy M.K., Alwan S.H. Synthesis and characterization of new 1, 3-Oxazepine-4, 7-dione compounds from 1, 2-diaminobenzene // Int. J. Health Sci., 2022, No 6, p. 4578-89. https://doi.org/10.53730/ijhs.v6nS4.9123.
- 17. Dalaf A.H., Jumaa F.H., Jabbar S.A. Synthesis and Characterization of some 2, 3-dihydroquinozoline and evaluation of their biological activity // Tikrit Journal of Pure Science, 2018, V. 23(8), p. 66-76. https://doi.org/10.25130/tjps.v23i8.545.
- 18. Jabar S.A., Hussein A.L., Dalaf A.H., Aboud H.S. Synthesis and characterization of azetidine and oxazepine compounds using ethyl-4-((4-bromo benzylidene) amino) benzoate as precursor and evalution of their biological activity // Journal of Education and Scientific Studies, 2020, V. 5(16), p. 39-52
- Abd I.Q., Ibrahim H.I., Jirjes H.M., Dalaf A.H. Synthesis and identification of new compounds have antioxidant activity betacarotene, from natural auxin phenyl acetic acid // Research Journal of Pharmacy and Technology, 2020, V. 13(1), p. 40-6.

- https://doi.org/10.5958/0974-360X.2020.00007.4.
- 20. Dalaf A.H., Jumaa F.H. Synthesis, identification and assess the biological and laser efficacy of new compounds of azetidine derived from benzidine // MJPS. 2020, V. 7(2), p. 12-25. DOI: 10.52113/2/07.02.2020/12-25.
- 21. Saleh R.H., Rashid W.M., Dalaf A.H., Al-Badrany K.A., Mohammed O.A. Synthesis of some new thiazolidinone compounds derived from schiff bases compounds and evaluation of their laser and biological efficacy // Ann Trop & Public Health, 2020, V. 23(7), p. 1012-31. http://doi.org/10.36295/ASRO.2020.23728.
- 22. Yass I.A., Aftan M.M., Dalaf A.H., Jumaa F.H. Synthesis and identification of new derivatives of bis-1, 3-oxazepene and 1, 3-diazepine and assess the biological and laser efficacy for them // InThe Second International & The Fourth Scientific Conference of College of Science –Tikrit University. (P4) 2020, p. 77-87.
- 23. Salih B.D., Dalaf A.H., Alheety M.A., Rashed W.M., Abdullah I.Q. Biological activity and laser efficacy of new Co (II), Ni (II), Cu (II), Mn (II) and Zn (II) complexes with phthalic anhydride // Materials Today: Proceedings, 2021, V. 43, p. 869-74. https://doi.org/10.1016/j.matpr.2020.07.083
- 24. Khalaf S.D., Ahmed N.A., Dalaf A.H. Synthesis, characterization and biological evaluation (antifungal and antibacterial) of new derivatives of indole, benzotriazole and thioacetyl chloride // Materials Today: Proceedings, 2021, V. 47, p. 6201-10. https://doi.org/10.1016/j.matpr.2021.05.160
- 25. Dalaf A.H., Jumaa F.H., Salih H.K. Preparation, characterization, biological evaluation and assess laser efficacy for new of imidazolidin-4-one // derivatives International Research Journal of Multidisciplinary Technovation, 2021, V. 41-51. p. https://doi.org/10.21608/ejchem.2021.5529 6.3163.

- 26. Rabah M.A., El Qady O.A., Abou El Kassem S.A. Recovery of Metal Values from Secondary Resources // Int. Res. J. Multidiscip. Technovation, 2022, V. 4(2), p. 11-20. https://doi.org/10.54392/irjmt2222.
- 27. Dalaf A.H., Jumaa F.H., Aftana M.M., Salih H.K., Abd I.Q. Synthesis, Biological Evaluation, Characterization, and Assessment Laser Efficacy for New Derivatives of Tetrazole // InKey Engineering Materials, 2022, V. 911, p. 33-39. https://doi.org/10.4028/p-6849u0.
- 28. Alasadi Y.K., Jumaa F.H., Dalaf A.H., Shawkat S.M., Mukhlif M.G. Synthesis, Characterization, and Molecular Docking of New Tetrazole Derivatives as Promising Anticancer Agents // Journal of Pharmaceutical Negative Results, 2022, V. 13(3), p. 513-22. https://doi.org/10.47750/pnr.2022.13.03.07 9.
- 29. Dalaf A.H., Jumaa F.H., Yass I.A. Synthesis, characterization, biological evaluation, molecular docking, assess laser efficacy, thermal performance and optical stability study for new derivatives of bis-1, 3-oxazepene and 1, 3-diazepine // InAIP Conference Proceedings, 2022, 2394, 040037. https://doi.org/10.1063/5.0121213.
- 30. Alasadi Y.K., Jumaa F.H., Dalaf A.H. Synthesis, identification, antibacterial activity and laser effect of new derivatives of bis-1, 3-oxazepene-4, 7-dione and 1, 3-diazepine-4, 7-dione. InAIP Conference Proceedings, 2022, 2394, 040019. https://doi.org/10.1063/5.0121358.
- 31. Toma M.A., Ibrahim D.A., Dalaf A.H., Abdullah S.Q., Aftan M.M., Abdullah E.Q. Study the adsorption of cyclopentanone on to natural polymers // InAIP Conference Proceedings, 2022, 2394, 040007. https://doi.org/10.1063/5.0121209.
- 32. Hamad A.M., Atiyea Q.M., Hameed D.N., Dalaf A.H. Green synthesis of copper nanoparticles using strawberry leaves and study of properties, anti-cancer action, and activity against bacteria isolated from Covid-19 patients // Karbala International Journal of Modern Science, 2023, V. 9(1),

- 12. https://doi.org/10.33640/2405-609X.3275.
- 33. Jassim A.S., Dalaf A.H., Abdullah T.F. Studying the Biological Activity and Properties of Copper Nanoparticles Prepared by Pulsed Laser Ablation in Liquid // InThe Third International and The Fifth Scientific Conference for College of Science Tikrit University, 2022, V. 25(1), p. 213-221.
- 34. Mohammed L.J., Hamad A.M., Atiyea Q.M., Jwair W.A., Dalaf A.H., Jasim A.S., Elsaigher S.M., Ragab A., Hassan Z.H. In vitro Comparison of the Effect of Zinc Oxide Nanoparticles and Hibiscus sabdariffa Extract on Streptococcus mutans Isolated from Human Dental Caries // InThe Third International and The Fifth Scientific Conference for College of Science—Tikrit University, 2022, V. 2(2), p. 5-14.
- 35. Najm R.S., Shannak Q.A., Dalaf A.H. Synthesis and Decoration of Aromatic Derivatives Nano Platelets by the Electric Method // Azerbaijan Pharmaceutical and Pharmacotherapy Journal, 2023, V. 22(2), p. 92-7. https://doi.org/10.61336/appj/22-2-22.
- Ruan K., Zhong X., Shi X., Dang J., Gu J. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review // Materials Today Physics, 2021, V. 20, 100456. https://doi.org/10.1016/j.mtphys.2021.1004 56.
- 37. Lv P., Yang X., Bisoyi H.K., Zeng H., Zhang X., Chen Y., Xue P., Shi S., Priimagi A., Wang L., Feng W. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics // Materials Horizons, 2021, V. 8(9), p. 2475-84. https://doi.org/10.1039/D1MH00623A.

- 38. Li Y.L., Li N.N., Wang D., Chu F., Lee S.D., Zheng Y.W., Wang Q.H. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size // Light: Science & Applications, 2022, V. 11(1), p. 188. https://doi.org/10.1038/s41377-022-00880-y.
- 39. Kim I., Ansari M.A., Mehmood M.Q., Kim W.S., Jang J., Zubair M., Kim Y.K., Rho J. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators // Advanced Materials, 2020, V. 32(50), 2004664. https://doi.org/10.1002/adma.202004664.
- 40. Zhang J., Uzun S., Seyedin S., Lynch P.A., Akuzum B., Wang Z., Qin S., Alhabeb M., Shuck C.E., Lei W., Kumbur E.C. Additive-free MXene liquid crystals and fibers // ACS central science, 2020, V. 6(2), p. 254-65. https://doi.org/10.1021/acscentsci.9b01217.
- 41. Esteves C., Ramou E., Porteira A.R., Moura Barbosa A.J., Roque A.C. Seeing the unseen: the role of liquid crystals in gassensing technologies // Advanced optical materials, 2020, V. 8(11), 1902117. https://doi.org/10.1002/adom.201902117.
- 42. Uchida J., Soberats B., Gupta M., Kato T. Advanced functional liquid crystals // Advanced Materials, 2022, V. 34(23), 2109063. https://doi.org/10.1002/adma.202109063.
- 43. Yin K., Hsiang E.L., Zou J., Li Y., Yang Z., Yang Q., Lai P.C., Lin C.L., Wu S.T. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications // Light: Science & Applications. 2022, V. 11(1), 161. https://doi.org/10.1038/s41377-022-00851-3.

ASTERİZM BİRLƏŞMƏLƏRİNİN SİNTEZİ, XARAKTERİSTİKASI VƏ KRİSTAL XÜSUSİYYƏTLƏRİNİN ÖYRƏNİLMƏSİ

Dərdaa A. İbrahim, Hanaa K. Salih

Tikrit Universiteti, Elm Kolleci, Kimya Bölməsi, Tikrit, İraq e-mail: <u>dardaa@tu.edu.iq</u>

Xülasə: Bu tədqiqat asterizm quruluşlu birləşmələrinin (D1-D6) mütləq etanolda həll edilmiş 1 mol benzol 1,3,5-triol və 3 mol hazırlanmış pentasiklik halqalı efir törəmələri ilə reaksiyası vasitəsilə sintezinə həsr olunmuşdur. Birləşmələrin strukturları infraqırmızı spektroskopiya və proton nüvə maqnit rezonans spektroskopiyası kimi fiziki və spektroskopik üsullardan istifadə etməklə təsdiq edilmişdir. Bundan əlavə, alınmış birləşmələrin ərimə nöqtələri və təmizlik dərəcələri müəyyən edilmişdir. Reaksiyanın gedişi Nazik Örtük Xromatoqrafiyası (TLC) ilə müşahidə edilmişdir. Bir sıra birləşmələrin maye kristal fazaları polyar optik mikroskop (POM) vasitəsilə tədqiq edilmişdir. **Açar sözlər:** asterizm birləşmələri, efirlər, maye kristallar.

СИНТЕЗ, ХАРАКТЕРИСТИКА И ИЗУЧЕНИЕ КРИСТАЛЛИЧЕСКИХ СВОЙСТВ СОЕДИНЕНИЙ АСТЕРИЗМА

Дардаа А. Ибрагим, Ханаа К. Салих

Кафедра химии, Колледж наук, Университет Тикрита, Тикрит, Ирак e-mail: dardaa@tu.edu.iq

Резюме: Это исследование включает синтез соединений со звездоподобной структурой (D1-D6) посредством реакции 1 моля бензол-1,3,5-триола с 3 молями приготовленных производных пентациклического кольца эфира, растворенных в абсолютном этаноле. Достоверность структур соединений была подтверждена с использованием физических и спектроскопических методов, таких как инфракрасная спектроскопия и протонная ядерная магнитно-резонансная спектроскопия. Кроме того, были определены точки плавления и чистота, а ход реакции контролировался с помощью тонкослойной хроматографии (TCX). Жидкокристаллические фазы некоторых приготовленных соединений были исследованы с помощью поляризационного оптического микроскопа (ПОМ).

Ключевые слова: соединение астеризма, эфиры, жидкие кристаллы.