

UDC 54.056

APPLICATION EXTRACTIVE DESULFURIZATION USING PIPERIDINIUM BASED IONIC SALT WITH FeCl₃ AS LEWIS ACID

¹Sariya W. Zaidan, ²Anwer M. Ameen, *²Assim A. Sabah

¹ Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq ²Department of Science, College of Basic Education, University of Mosul, Mosul, Iraq e-mail: anwermameen@uomosul.edu.iq

> Received 15.05.2024 Accepted 15.07.2024

Abstract: The study involves the synthesis of inorganic salts by reacting the organic salts with ferric chloride and organic salts (1) [mAMPi]Br, (2) [pAMPi]Br derived from the nitrogenous base of Piperidinium. Spectroscopic and physical techniques were used to characterize the prepared compounds, including mass spectrometry, infrared FT-IR, micro-elemental analysis, and ¹H-NMR nuclear magnetic resonance spectroscopy. The extractive desulfurization method was used in this study, and the produced compounds were examined using model oil that contained 1000 ppm of the sulfur compound. Dibenzothiophene (DBT) was dissolved in an n-hexane solvent, and ultraviolet (UV) was used as a quantitative analysis method to calculate the percentages of sulfur removal. Future research may be able to enhance the sulfur removal rate provided by the prepared compounds, which were showed an acceptable result.

Keywords: Ionic liquids, organic salts, Lewis acid, desulfurization

DOI: 10.32737/2221-8688-2024-4-509-515

Introduction

Environmental concern has increased worldwide, and strict standards and regulations have been enacted to reduce the negative impacts of automobile exhaust on human health and the environment [1].

With increasing environmental awareness, limitations on restricting fuel sulfur content have been issued worldwide. The treatments must go ahead to reach the rigid regulation of the sulfur level in liquid fuels. To overcome the defects of monolayer ionic liquids (ILS) mentioned above. the devised SiO_{2-} immobilized bilayer ILS (SiO₂–Bill) [2]. With the development of industry, the global gradually atmospheric environment deteriorated. The sulfur component of fuel oil turns to sulfur oxides that will seriously pollute the atmosphere.

The essential desulphurization method is hydrodesulfurization (HDS) [3]. Social

development demands large consumption of fossil fuels in industries as well as for other applications in different fields like transportation, power stations, power engines, aircraft, agricultural fields, etc. It is established that the presence of sulfur compounds in fossil fuels after the combustion process produces gaseous Sox in the environment, which is the cause of air pollution via acid rain and produces various other hazardous products that create several health issues [4].

Modern urbanization and industrial development have greatly stimulated global fossil energy consumption. Various methods have been tried for desulfurization, including hydro, bio-absorptive, extractive, and oxidative desulfurization (ODS). As OSCs' most popular removal method, hydro-desulfurization (HDS) is applied intensively in fossil fuel refining plants worldwide. The HDS technology has

been considered an efficient method for nearly a century in removing various sulfurous compounds from several fuel resources. In this process, sulfur is removed as H₂S gas; therefore, hydrodesulfurization comprises facilities for capturing and removing H₂S [5, 6].

Experimental part

Methodology. Each and every chemical that is used comes from an authentic, ultra-pure source. The FT-IR spectra were obtained using the JASCO Canvas FT/IR 4200 infrared spectrophotometer. 1HNMR spectra were acquired on a Bruker 400MHz spectrometer with tetramethylsilane (TMS) as an internal reference and DMSO-d6 as a solvent. The microanalysis was performed at Thermo Electron Corporation's Flash EA 1112 Series using a Trio-1000 mass spectrometer.

Preparation of organic salts and complex salts of Fe(III).

1-allyl-3-methylpiperidinium bromide [mAMPi]I (1)

1-allyl-4-methylpiperidinium bromide [pAMPi]I (2)

The organic salts (ionic liquids) have been prepared according to the literature [7-11], considering that the reaction is exothermic and its yield increases with cooling. The Scheme below displays the reaction equation:

By reacting different ratios of organic salt with ferric chloride in ratios of (1:1) and (1:2), respectively, ionic salts of iron were created. The prepared compounds' physical characteristics and the outcomes of their elemental microanalysis are displayed in the Table 1.

In order to prepare the model oil sample, the sulfur compound Dibenzothiophene (DBT) must first be dissolved in hexane solvent to achieve the initial concentration of 1000 ppm. Next, the optimal conditions for the sulfur removal process must be identified.

Table 1. Physical properties and results of elemental microanalysis of the prepared compounds

	Formula	Melting	CHN (theory)/ Calculate			
Compounds		point (°C)	С%	Н%	N%	Fe%
(1) [mAMPi]Br	C ₉ H ₁₈ BrN	157-159	(49.10) 48.24	(8.24) 8.23	(6.63) 6.33	
(2) [pAMPi]Br	C ₉ H ₁₈ BrN	144-146	(49.10) 46.39	(8.24) 7.86	(6.63) 7.76	
3) $[mAMPi]FeCl_3Br$ $C_9H_{18}BrCl_3FeN$		150-152	(28.27)	(4.75)	(3.66)	(14.61)

			29.88	4.65	3.48	14.06
(4) [mAMPi]Fe ₂ Cl ₆ Br	C ₉ H ₁₈ BrCl ₆ Fe ₂ N	140-143	(19.85)	(3.33)	(2.57)	(20.51)
(4) [MANII 1]F 62C16B1			18.28	3.92	2.63	20.18
(5) [pAMPi]FeCl ₃ Br	C ₉ H ₁₈ BrCl ₃ FeN	148-150	(28.27)	(4.75)	(3.66)	(14.61)
(5) [pAMII I]FeCI3BI	C91118D1C131'CIV	140-150	27.88	4.35	3.68	15.00
(6) [nAMDilEo.Cl.Pr	C ₉ H ₁₈ BrCl ₆ Fe ₂ N	141-143	(19.85)	(3.33)	(2.57)	(20.51)
(6) [pAMPi]Fe ₂ Cl ₆ Br			18.76	3.48	2.66	21.24

Results and discussion

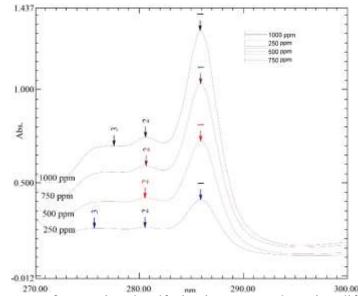
The ability of Piperidinium ionic liquids to extract sulfur from petroleum derivatives is one of their main characteristics. These liquids contain Lewis acids, iron in particular. Every produced chemical was thoroughly characterized and found to be in accordance with the data presented in the references [8, 12, 13].

The ¹H-NMR characterization data for organic salts (**1,2**) respectively are (DMSO-d₆, 400 MHz), $\delta 0.88$ (3H, C-CH₃, s), $\delta 1.066$ (1H, CH-C, bs), $\delta 1.06$, $\delta 1.73$, $\delta 3.29$, $\delta 3.70$ (cyclic, 2H, CH₂, bs), $\delta 3.70$ (2H, CH₂ for terminal group, bs), $\delta 4.010$ (2H, CH₂, d, for allylic group), $\delta 5.74$ (1H, = CH, bs), $\delta 9.59$ (1H, NH, s). The GC-mass data for organic salt (**1**), [*mAMPi]Br*, C₉H₁₈BrN, (*m/z*, intensity%): (140, 100%), (138.2, 1.04%), (126.1, 0.11%),

(124.1, 0.39%), (112,1.08%), (98.1, 0.5%), (84, 0.32%), (82, 0.19%), (70, 0.06%), (68, 0.05%). (DMSO-d6, 400 MHz), δ 0.90 (3H, C-CH₃, s), δ 1.066 (1H, CH-C, bs), δ 1.06, δ 1.73, δ 3.29, δ 3.70 (cyclic, 2H, CH₂, bs), δ 3.21 (2H, CH₂, d, for allylic group), δ 5.38 (1H, =CH, bs), δ 5.18 (2H, for terminal CH₂ group, bs) δ 8.53 (1H, NH, s). The GC-mass data for organic salt (2), [*pAMPi]Br*, C₉H₁₈BrN, (*m/z*, intensity%): (140.2, 4.41%), (138.2, 0.15%), (100.1, 100%), (98.1, 2.26%), (96.1, 0.01%), (94.1, 0.03%), (82, 0.04%), (82, 0.02%), (70, 0.06%), (58, 0.04%).

In addition to the properties listed in the previous Table 1, the compounds have been well characterized [7, 14, 15] by spectroscopic and physical measurements, as shown in Table 2.

Table 2	Some	characteristics	data fo	r the	prepared	compounds
I abic 2.	Some	Characteristics	uata 10	n unc	Dicbaicu	Compounds


Comp.		IR data	a (cm ⁻¹)		μ_{eff}	Conductivity**
No.	C-N	N ⁺ -R*	N-H	M-X	(BM)	ohm ⁻¹ .cm ² .mol ⁻¹
1	1586	2368	3422			67
2	1592	2365	3412			72
3	1214	2356	3398	239,331	5.61	80
4	1110	2368	3434	242,327	5.86	88
5	1118	2368	3412	254,316	5.56	82
6	1245	2368	3422	246,331	5.82	86

 $[*]R = CH_2CHCH_2$

The Extraction desulfurization. The optimal conditions for the extractive desulfurization process were determined in advance by determining the concentration of the salt prepared and used in the test, the time of the extraction process, and the temperature. The results showed optimal conditions (concentration in grams, extraction time 60

minutes, 30 degrees Celsius). Using ultraviolet technology with a Shimadzu UV 1800 device, and using an initial concentration of the petroleum model of sulfur using Dibenzothiophene (DBT) dissolved in hexane solvent at a concentration of 1000 ppm, a standard curve was plotted (Figures 1 and 2).

^{** (}DMF) as solvent at 25°C, (10⁻³ M)

Fig. 1. Calibration curve of extraction desulfurization process by using different concentrations (standard solutions)

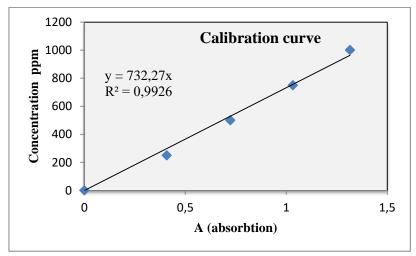


Fig. 2. The calibration curve of the extraction desulfurization process

The Table 3 illustrates how the extraction comparing the results of testing the prepared process' efficiency was determined by compounds with existing literature [8, 16-19].

Table 3. The extraction data of tested prepared salts by using optimal conditions (285 nm, 60 min, 0.1 gm of extractant at 30°C)

0.1 g e1 0.101.00 u1 e v e)						
Comp. No.	A (absorption)	S content ppm	S removal %			
1	1.129	826	17.4			
2	1.145	838	16.2			
3	1.060	776	22.4			
4	1.058	774	22.6			
5	0.901	659	34.1			
6	0.898	657	34.3			

Conclusion

Comparing the prepared salts to other studies [10, 16-18], it is evident from the earlier level in the sulfur removal process. It is also

evident that there is no variation in the extraction efficiency when comparing organic salts to one another. It is observed that there are no variations in efficiency due to the methyl group's replacement on the ring. It is found that

the extraction efficiency rises with the addition of iron salt [10, 11, 20] and climbs as the quantity of iron salt increases. This is in agreement with the literature information.

Acknowledgement

The researchers acknowledge the University of Liverpool's Department of Chemistry for providing scientific supplies. The University of Mosul, particularly the College of Basic Education research labs, is also acknowledged and thanked by the researchers for supporting scientific research.

References

- 1. Moheb-Aleaba Z., Khosravi-Nikou M.R. Extractive desulfurization of liquid hydrocarbon fuel: Task-specific ionic liquid development and experimental study // Chemical Engineering Research and Design, 2023, V. 189, pp. 234-249. https://doi.org/10.1016/j.cherd.2022.11.021
- 2. Wang Y.-Z., Li Z.-Z., Liu Z.-W., Shi X.-Y. Heterogenous carboxyl-functionalized liquids/polyoxometalate bilayer ionic extractant-free catalysts oxidative for desulfurization // Journal of Molecular Liquids, 2023, V. 373, 121245. p. https://doi.org/10.1016/j.molliq.2023.121245
- 3. Li J., Liang Y., Tang X. Imidazole-methane sulfonic ionic liquids used for catalytic alkylation desulfurization and enhancement of microchannel technology // Chemical Engineering Journal, 2022, V. 446, p. 137472.
 - https://doi.org/10.1016/j.cej.2022.137472
- 4. Kaur P., Chopra H.K. SBA-15 supported benzoxazolium-based ionic liquids: Synthesis, characterization, and application in the adsorptive desulfurization // Fuel Processing Technology, 2022, V. 238, p. 107480.
 - https://doi.org/10.1016/j.fuproc.2022.107480
- Cao Z., Wu X., Wei X. Ionic liquid screening for desulfurization of coke oven gas based on COSMO-SAC model and process simulation // Chemical Engineering Research and Design, 2021, V. 176, pp. 146-161. https://doi.org/10.1016/j.cherd.2021.09.032
- 6. Ahmed I., Kim C.-U., Jhung S. H. Metal-free oxidative desulfurization with molecular oxygen by using N-enriched porous carbons derived from ionic liquid-loaded covalent-

- organic polymer // Chemical Engineering Journal, 2022, V. 450, p. 138416. https://doi.org/10.1016/j.cej.2022.138416
- 7. Saied S.M., Mohammed S.J., Khaleel B.T., Saleh M.Y. Comparative studies between conventional techniques and green chemistry to synthesis of novel piperidinium salts ionic liquids (PBSILs) // Journal of Chemical Health Risks, 2021, V. 11, pp. 451-456. https://doi.org/10.22034/jchr.2021.686640
- 8. Sabah A.A. Extractive desulfurization using piperidinium based ionic liquids with Lewis acids // Journal of the Turkish Chemical Society Section A: Chemistry, 2021, V. 8, pp. 1057-1088.
 - https://doi.org/10.18596/jotcsa.963930
- Sabah A.A. Synthesis and Characterization of Some Transition Metals Complex Salts of Pyridinium Iodide Ionic Liquids: Application on Extractive Desulfurization // Journal of the Turkish Chemical Society Section A: Chemistry, 2021, V. 8, pp. 763-774. https://doi.org/10.18596/jotcsa.942318
- 10. Ko N.H., Lee J.S., Huh E.S., Lee H., Jung K.D., Kim H.S., *et al.* Extractive desulfurization using Fe-containing ionic liquids // *Energy & Fuels*, 2008, V. 22, pp. 1687-1690.
 - https://doi.org/10.1021/ef7007369
- 11. Wang H., Yan R., Li Z., Zhang X., Zhang S. Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly (ethylene terephthalate) // Catalysis Communications, 2010, V. 11, pp. 763-767. https://doi.org/10.1016/j.catcom.2010.02.01
- 12. Rodríguez-Cabo B., Rodríguez H., Rodil E., Arce A., Soto A. Extractive and

oxidative-extractive desulfurization of fuels with ionic liquids // *Fuel*, 2014, V. 117, pp. 882-889.

https://doi.org/10.1016/j.fuel.2013.10.012

- Paduszynski K., Krolikowski M., Zawadzki M., Orzeł P. Computer-aided molecular design of new task-specific ionic liquids for extractive desulfurization of gasoline // ACS Sustainable Chemistry & Engineering, 2017, V. 5, pp. 9032-9042. https://doi.org/10.1021/acssuschemeng.7b0
 1932
- Belhocine T., Forsyth S.A., Gunaratne H.N., Nieuwenhuyzen M., Nockemann P., Puga A.V., et al. 3-Methylpiperidinium ionic liquids // Physical Chemistry Chemical Physics, 2015, V. 17, pp. 10398-10416.

https://doi.org/10.1039/C4CP05936K

- Montanino M., Carewska M., Alessandrini F., Passerini S., Appetecchi G.B. The role of the cation aliphatic side chain length in piperidinium bis (trifluoromethansulfonyl) imide ionic liquids // Electrochimica Acta, 2011, V. 57, pp. 153-159. https://doi.org/10.1016/j.electacta.2011.03.
- 16. Jiang W., Zhu W., Chang Y., Chao Y., Yin S., Liu H. et al. // Ionic liquid extraction and catalytic oxidative desulfurization of fuels using dialkylpiperidinium tetrachloroferrates catalysts // Chemical

- *Engineering Journal*, 2014, V. 250, pp. 48-54.
- https://doi.org/10.1016/j.cej.2014.03.074
- 17. Li J., Lei X.-J., Tang X.-D., Zhang X.-P., Wang Z.-Y., Jiao S. Acid dicationic ionic liquids as extractants for extractive desulfurization // Energy & Fuels, 2019, V. 33, pp. 4079-4088. https://doi.org/10.1021/acs.energyfuels.9b0 0307
- 18. Ahmed O.U., Mjalli F.S., Al-Wahaibi T., Al-Wahaibi Y., AlNashef I.M. Stability of superoxide ion in phosphonium-based ionic liquids // *Industrial & Engineering Chemistry Research*, 2015, V. 54, pp. 2074-2080. https://doi.org/10.1021/ie504893k
- 19. Zalov A., İsgenderova K., Askerova Z. Spectrophotometric research into interaction nickel 1-(2-(II)with pyridylazo)-2-hydroxy-4-mercaptofenol and aminophenols // Chemical Problems, 2021. No. 3, pp. 150-159. https://doi.org/10.32737/2221-8688-2021-3-150-159
- Martinez-Magadan J.-M., Oviedo-Roa R., Garcia P., Martinez-Palou R. DFT study of the interaction between ethanethiol and Fecontaining ionic liquids for desulfuration of natural gasoline // Fuel processing technology, 2012, V. 97, pp. 24-29. https://doi.org/10.1016/j.fuproc.2012.01.00

LYUİS TURŞUSU KİMİ FeCl3 İLƏ PİPERİDİNİUM ƏSASLI İON DUZUNDAN İSTİFADƏ ETMƏKLƏ EKSTRAKSİYALI DESULFURİZASİYANIN TƏTBİQİ

¹Səriyyə V. Zaydan, ²Ənvər M. Amin, *²Assim A. Sabah

¹Kimya şöbəsi, Elmlər Kolleci, Mosul Universiteti, Mosul, İraq ²Elm Bölməsi, Əsas Təhsil Kolleci, Mosul Universiteti, Mosul, İraq e-mail: anwermameen@uomosul.edu.iq

Xülasə: Tədqiqatda dəmir (III) xlorid və piperidiniumun azotlu əsaslarından alınmış üzvi duzları (1) [mAMPi]Br, (2) [pAMPi]Br ilə reaksiyası nəticəsində qeyri-üzvi duzların sintezi aparılmışdır. Alınmış birləşmələr mass-spektrometriya, infraqırmızı Furye spektroskopiya, mikroelement analizi və ¹H-NMR nüvə maqnit rezonans spektroskopiyası üsulları ilə xarakterizə edilmişdir. Bu tədqiqatda ekstraksiyalı kükürdsüzləşdirmə üsulundan istifadə edilərək, sintez edilmiş birləşmələr tərkibində 1000 ppm kükürd birləşmələri olan neftlə tədqiq edilmişdir. Dibenzotiofen (DBT) n-heksan həlledicidə həll edilmiş və kükürdün xaric olma faizini hesablamaq üçün kəmiyyət təhlili

üsulu kimi ultrabənövşəyi (UV) üsuldan istifadə edilmişdir. Gələcək tədqiqatlar yüksək nəticə göstərən birləşmələrdən istifadə etməklə kükürdün çıxarılması sürətini artıra bilər.

Açar sözləri: İon mayeləri, üzvi duzlar, Lyuis turşusu, desulfurizasiya

ПРИМЕНЕНИЕ ЭКСТРАКЦИОННОЙ ДЕСУЛЬФУРИЗАЦИИ С ИСПОЛЬЗОВАНИЕМ ИОННОЙ СОЛИ НА ОСНОВЕ ПИПЕРИДИНИЯ С FeCl₃ В КАЧЕСТВЕ КИСЛОТЫ ЛЬЮИСА

¹Сария В. Зайдан, ²Анвер М. Амин, *²Ассим А. Сабах

¹Кафедра химии, Колледж наук, Университет Мосула, Мосул, Ирак ²Кафедра наук, Колледж базового образования, Университет Мосула, Мосул, Ирак e-mail: anwermameen@uomosul.edu.iq

Резюме: Исследование включает синтез неорганических солей путем взаимодействия хлорида железа с органическими солями (1) [mAMPi]Br, (2) [pAMPi]Br, полученными из азотистого основания пиперидиния. Для характеристики полученных соединений использовались спектроскопические и физические методы, включая масс-спектрометрию, инфракрасную Фурье-спектроскопию, микроэлементный анализ и спектроскопию ядерного магнитного резонанса ¹H-ЯМР. В этом исследовании использовался метод экстракционной десульфурации, а полученные соединения были исследованы с использованием модельной нефти, содержащей 1000 ppm сернистого соединения. Дибензотиофен (DBT) растворяли в растворителе н-гексане, а ультрафиолет (УФ) использовали в качестве количественного метода анализа для расчета процентов удаления серы. Будущие исследования могут повысить скорость удаления серы, обеспечиваемую приготовленными соединениями, которые показали приемлемый результат.

Ключевые слова: Ионные жидкости, органические соли, кислота Льюиса, десульфуризация.