КИНЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ ПРОЦЕССА ПИРОЛИЗА ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ C₂-C₄

A.3.Таиров¹, A.М.Алиев¹, M.3.Керимов², M.A.Гасанов², A.М.Гусейнова¹, 3.A.Мамедов², H.P.Исмаилов²

¹Институт химических проблем национальной АН Азербайджана ²Завод "Этилен-Полиэтилен" концерна "Азеркимья", г. Сумгаит

На основе лабораторных исследований на заводе "Этилен-Полиэтилен" концерна "Азеркимья" была составлена суммарная стехиометрическая схема процесса пиролиза парафиновых углеводородов C_2 - C_4 и соответствующая ей кинетическая модель с учетом рециркуляционных особенностей. Рассмотрены некоторые аспекты теории рециркуляции.

Процесс пиролиза бензина на Сумгаитском заводе "Этилен-Полиэтилен" концерна "Азеркимья" сопровождается рядом последовательно-параллельно протекающих химических превращений, в результате которых образуется большое количество продуктов (в том числе углеводороды C_2 - C_4), некоторые из которых не находят своего дальнейшего применения.

С целью усовершенствования процесса и получения наилучшей прибыли от него необходимо выявить возможность наибольшего превращения части побочных продуктов в целевые (этилен + пропилен). Для этого полученная при пиролизе бензина этан-пропанбутановая фракция направляется в газовую печь пиролиза с целью дополнительного получения целевых продуктов. Т.к. кроме этанпропан-бутановой фракции, при пиролизе бензина образуется также бутилен, который в настоящее время просто посылается на хранение, то для возможности его использования в качестве сырья для пиролиза нами будет рассмотрен случай и его рециркуляции.

Первым этапом в этой работе является экспериментальное исследование кинетических закономерностей процесса и составление его стехиометрической схемы.

Процесс термического разложения углеводородов состоит из целого ряда элементарных реакций, протекающих в две стадии. Сначала протекают первичные реакции термического расщепления алканов с образованием олефинов, диолефинов и алканов с меньшим, чем у исходных, числом атомов углерода и водорода. На второй стадии образовавшиеся олефины и диолефины, а также алканы подвергаются реакциям дегидрирования, дальнейшего расщепления и конденсации с образованием метана, ацетилена, бензола и углерода. По-

следний, адсорбируясь на поверхности реактора, образует пиролизный кокс.

Учитывая сказанное и на основе проведенных лабораторных экспериментов, была предложена следующая стехиометрическая модель пиролиза парафиновых углеводородов C_2 - C_4 :

1. H-C₄H₁₀
$$\xrightarrow{K_1}$$
 C₃H₆ + CH₄
2. H-C₄H₁₀ $\xrightarrow{K_2}$ C₂H₄ + C₂H₆
3. H-C₄H₁₀ $\xrightarrow{K_3}$ H-C₄H₈ + H₂
4. C₄H₈ $\xrightarrow{K_4}$ 2C₂H₄
5. C₃H₈ $\xrightarrow{K_5}$ CH₄ + C₂H₄
6. C₃H₈ $\xrightarrow{K_6}$ C₃H₆ + H₂
7. C₃H₈ + H₂ $\xrightarrow{K_7}$ C₂H₆ + CH₄
8. C₂H₆ $\xrightarrow{K_8}$ C₂H₄ + H₂
9. C₃H₈ + CH₄ $\xrightarrow{K_9}$ C₂H₆ + C₂H₄ + H₂
10. C₃H₆ + H₂ $\xrightarrow{K_{10}}$ C₂H₄ + CH₄
11. C₂H₄ + 2H₂ $\xrightarrow{K_{11}}$ 2CH₄
12. C₂H₄ $\xrightarrow{K_{12}}$ $\xrightarrow{1}$ C₆H₆ + H₂
13. C₂H₄ $\xrightarrow{K_{13}}$ C₂H₂ + H₂
14. C₂H₄ $\xrightarrow{K_{14}}$ 2C + 2H₂
15. 2C₂H₄ $\xrightarrow{K_{15}}$ C₄H₆ + H₂

Следующим этапом была разработка соответствующей этой схеме полной кинетической модели, в которой бы учитывались рециркуляционные параметры процесса, т.к. процесс проводится с рециркуляцией непрореагировавшего сырья. Она представлена уравнениями:

$$\begin{split} \frac{dn_1}{dl} &= -u^{-1} (\kappa_1 + \kappa_2 + \kappa_3) n_1 \\ \frac{dn_2}{dl} &= -u^{-1} (\kappa_3 n_1 - \kappa_4 n_2) \\ \frac{dn_3}{dl} &= -u^{-1} (\kappa_3 n_1 - \kappa_4 n_2) \\ \frac{dn_3}{dl} &= -u^{-1} \left(\kappa_1 n_1 + \kappa_6 n_3 - \kappa_{10} n_4 \frac{Pn_8}{RT \sum_i n_i} \right) \\ \frac{dn_4}{dl} &= -u^{-1} \left(\kappa_2 n_1 + \kappa_7 n_3 \frac{Pn_8}{RT \sum_i n_i} - \kappa_8 n_5 + \kappa_9 n_3 \frac{Pn_7}{RT \sum_i n_i} \right) \end{split}$$

$$(1)$$

$$\frac{dn_6}{dl} &= -u^{-1} \left(\kappa_2 n_1 + 2\kappa_4 n_2 + \kappa_3 n_3 + \kappa_8 n_5 + \kappa_9 n_3 \frac{Pn_7}{RT \sum_i n_i} + \kappa_{10} n_4 \frac{Pn_8}{RT \sum_i n_i} - \kappa_{11} n_6 \left(\frac{Pn_8}{RT \sum_i n_i} \right)^2 - \left(\kappa_{12} + \kappa_{13} + \kappa_{14} \right) n_6 - 2\kappa_{15} n_6^2 \left(\frac{P}{RT \sum_i n_i} \right) \right) \\ \frac{dn_7}{dl} &= -u^{-1} \left(\kappa_1 n_1 + \kappa_5 n_3 + \kappa_7 n_3 \frac{Pn_8}{RT \sum_i n_i} + \kappa_{10} n_4 \frac{Pn_8}{RT \sum_i n_i} - \kappa_{10} n_4 \frac{Pn_8}{RT \sum_i n_i} \right) \\ -\kappa_9 n_3 \frac{Pn_7}{RT \sum_i n_i} + 2\kappa_{11} n_6 \left(\frac{Pn_8}{RT \sum_i n_i} \right)^2 \right) \\ \frac{dn_8}{dl} &= -u^{-1} \left(\kappa_3 n_1 + \kappa_6 n_3 - \kappa_7 n_3 \frac{Pn_8}{RT \sum_i n_i} + \kappa_8 n_5 + \kappa_9 n_3 \frac{Pn_7}{RT \sum_i n_i} - \kappa_{10} n_4 \frac{Pn_8}{RT \sum_i n_i} - \kappa_{10} n_4 \frac{Pn_8}{RT \sum_i n_i} \right) \\ -2\kappa_{11} n_6 \left(\frac{Pn_8}{RT \sum_i n_i} \right)^2 + \left(\kappa_{12} + \kappa_{13} + 2\kappa_{14} \right) n_6 + \kappa_{15} n_6^2 \left(\frac{P}{RT \sum_i n_i} \right) \\ \frac{dn_{10}}{dl} &= u^{-1} \kappa_{15} n_6 \frac{Pn_8}{RT \sum_i n_i} \right) \\ \frac{dn_{10}}{dl} &= u^{-1} \kappa_{15} n_6 \frac{Pn_8}{RT \sum_i n_i} \right) \\ \frac{dn_{10}}{dl} &= u^{-1} \kappa_{15} n_6 \frac{Pn_8}{RT \sum_i n_i} \right) \\ \frac{dn_{10}}{dl} &= u^{-1} \kappa_{15} n_6 \frac{Pn_8}{RT \sum_i n_i} \right) \\ \frac{dn_{10}}{dl} &= u^{-1} \kappa_{15} n_6 \frac{Pn_8}{RT \sum_i n_i} \right) \\ \frac{dn_{10}}{dl} &= u^{-1} \kappa_{15} n_6 \frac{Pn_8}{RT \sum_i n_i} \right) \\ \frac{dn_{10}}{dl} &= u^{-1} \kappa_{15} n_6 \frac{Pn_8}{RT \sum_i n_i} \right) \\ \frac{dn_{10}}{dl} &= u^{-1} \kappa_{15} n_6 \frac{Pn_8}{RT \sum_i n_i} \right) \\ \frac{dn_{10}}{dl} &= u^{-1} \kappa_{15} n_6 \frac{Pn_8}{RT \sum_i n_i} \right) \\ \frac{dn_{10}}{dl} &= u^{-1} \kappa_{15} n_6 \frac{Pn_8}{RT \sum_i n_i} \right)$$

Здесь и — линейная скорость потока, $u = \frac{V}{F} = \frac{\left(\sum_i n_i\right)RT}{FP} \, .$

Для упрощения компоненты пирогаза переобозначены:

$$\begin{array}{lll} n_1-\text{H-C}_4H_{10}; & n_2-\text{H-C}_4H_8; \; n_3-C_3H_8; \; n_4-C_3H_6; \\ n_5-C_2H_6; \; n_6-C_2H_4; \; n_7-CH_4; \; n_8-H_2; & n_9-C_6H_6; \; n_{10}-C_4H_6; \; n_{11}-C_2H_2; \; n_{12}-C. \end{array}$$

Определены кинетические константы модели. Т.к. процесс пиролиза фракции C_2 - C_4 осуществляется с рециркуляцией непрореагировавшего сырья, то к кинетической модели добавляются уравнения рециркуляционных потоков [1]:

уравнение материального баланса для іго компонента на входе в реактор:

$$f_i^0 = f_{0i}(1-\alpha_R) + f_{Ri}\alpha_R,$$
 (2)
уравнение материального баланса для і-

уравнение материального баланса для іго компонента на выходе из реактора:

$$f_i = f_{ini} \quad (1 - \alpha_R) + f_{Ri} \alpha_R, \tag{3}$$

Согласно теории рециркуляции, общая загрузка реактора g^0 определяется через массовую долю рециркулята α_R от общего потока на выходе из реактора и количества компонентов в свежей загрузке g_{0i} :

$$g^{0} = \frac{1}{1 - \alpha_{R}} \sum_{i} g_{0i}$$
 (4)

Соответственно текущее n_i и общее число молей $\sum\limits_{i} n_i$ в кинетической модели определяются из выражений:

$$n_{i} = \frac{\frac{1}{1 - \alpha_{R}} \sum_{i} g_{0i}}{\overline{M}} \alpha'_{i} + \Delta n_{i}$$
 (5)

$$\sum_{i} n_{i} = \frac{\frac{1}{1 - \alpha_{R}} \sum_{i} g_{0i}}{\overline{M}} \sum_{i} \alpha'_{i} + \sum_{i} \Delta n_{i}}$$
 (6)

В работе [1] рассматривался процесс пиролиза парафиновых углеводородов C_2 - C_3 , который, как это принято в промышленности, проводился в жестком режиме с целью достижения максимального превращения сырья за один проход (80-85%), что связано со значительным выходом побочных продуктов.

Целью данной работы является исследование процесса при использовании в качестве сырья для пиролиза смеси парафиновых углеводородов C_2 - C_4 и олефинов C_4 , а также применение основных принципов теории рециркуляции [2], согласно которым, работая на относительно небольших степенях превращения (т.е. сокращая время пребывания реактан-

тов в зоне реакции) и применяя при этом рециркуляцию всего непрореагировавшего сырья, можно добиться, с одной стороны, повышения селективности процесса при одновременном увеличении выработки целевых продуктов, а с другой стороны - уменьшить скорости побочных реакций, приводящих к чрезмерному отложению кокса на стенках реактора, т.е. к сокращению длительности его работы.

При расчете любого процесса с рециркуляцией, естественно, возникает вопрос: какими должны быть количество и состав рециркуляционного потока, чтобы выбранный критерий оптимальности достигал своего экстремума. При фракционной рециркуляции состав рециркулята зависит от заданного состава сырья и требуемого состава на входе в реактор и при различных степенях превращения будет различным. Таким образом, при фракционной рециркуляции на величину α_R накладываются ограничения, которые можно получить из уравнений материального баланса на входе в реактор с рециркуляционной петлей и на выходе из него (из уравнений (2) и (3)) и неравенства $0 \le \alpha_R \le 1$ (7). Если имеет место чистое отделение непрореагировавшей части компонентов сырья от всей смеси на выходе из реактора, то вместо уравнения (3) будем иметь:

$$\sum_{i \in \Gamma} f_i = \sum_{i \in \Gamma} f_{R_i} \alpha_R = \alpha_R \tag{8}$$

т.е. массовая доля рециркулята будет равна сумме массовых долей компонентов сырья на выходе из реактора. В зависимости от того, какие из возможных пяти составов, характеризующих процесс с рециркуляцией (\overline{f}_0 , \overline{f}^0 , \overline{f} , \overline{f}_R , \overline{f}_{np}), нам заданы, пределы возможного изменения α_R будут различными.

Вектор состава потока на выходе из реактора \overline{f} до его разделения на отводимый и рециркулируемый потоки определяется решением системы дифференциальных уравнений, описывающих процесс, поэтому считается известным.

Воспользовавшись ограничениями (2, 3, 7), можно определить пределы варьирования α_R для различных случаев при заданном составе на входе в реактор (f_i^0 , $i=\overline{1,N}$). Они будут равны:

(12)

1)
$$1 - \min_{i} \left\{ \frac{f_{i}}{f_{npi}} \right\} \le \alpha_{R} \le 1 - \max_{i} \left\{ \frac{f_{i} - f_{i}^{0}}{f_{npi}} \right\}, (9)$$

если известны все f_{npi} и выполняются условия:

$$f_{\text{npi}} \ge 0$$
, $\sum_{i} f_{\text{npi}} = 1$, $i = \overline{1, N}$;

2)
$$0 \le \alpha_{R} \le \min_{i} \left\{ \frac{f_{i}^{0}}{f_{Ri}}, \frac{f_{i}}{f_{Ri}} \right\},$$
 (10)

если известны все f_{Ri} и выполняются условия:

$$\left\{ \begin{array}{l} 1 - \min \limits_{i \in I_{1}} \left\{ \frac{f_{i}^{\ 0}}{f_{0i}} \right\} \\ 0 \\ 1 - \min \limits_{i \in I_{3}} \left\{ \frac{f_{i}^{\ 0}}{f_{npi}} \right\} \end{array} \right\} \leq \alpha_{R} \leq \min \left\{ \begin{array}{l} 1 - \max \limits_{i \in I_{1}} \left\{ \frac{f_{i}^{\ 0} - f_{i}}{f_{0i}} \right\} \\ \min \limits_{i \in I_{2}} \left\{ \frac{f_{i}^{\ 0}}{f_{Ri}}, \frac{f_{i}}{f_{Ri}} \right\} \\ 1 - \max \limits_{i \in I_{3}} \left\{ \frac{f_{i} - f_{i}^{\ 0}}{f_{npi}} \right\} \end{array} \right\}$$

для более общего случая, когда, кроме полностью заданных составов потоков \bar{f}^0 и \bar{f} , задан не весь состав одного из трех оставшихся потоков, а массовые доли одного или нескольких компонентов в потоках \bar{f}_0 , \bar{f}_R и \bar{f}_{np} :

$$\begin{array}{cccc} f_{0i}{\geq}0 & \text{для} & i{\in}I_1,\\ f_{Ri}{\geq}0 & \text{для} & i{\in}I_2,\\ f_{npi}{\geq}0 & \text{для} & i{\in}I_3,\\ \text{причем } I_1{+}\;I_2{+}\;I_3{=}\;I. \end{array}$$

Выбрав численные значения α_R в соответствующих каждому случаю пределах его изменения, можно определить неизвестные массовые доли компонентов по уравнениям материальных балансов (2) и (3).

Выражения (9)-(12) носят общий характер и могут быть использованы для любого процесса с рециркуляцией.

В дальнейшем будет разработана полная математическая модель промышленного процесса пиролиза парафиновых углеводородов C_2 - C_4 и олефинов C_4 с учетом вышеуказанных аспектов теории рециркуляции и проведена на ее основе оптимизация процесса.

ОБОЗНАЧЕНИЯ

F – площадь поперечного сечения трубы, м;

 $f_{i}^{\,0}\,$ – массовая доля і-го компонента в общей загрузке;

 f_{0i} — массовая доля і-го компонента в свежей загрузке;

$$\begin{split} f_{Ri} \geq &0, \; \sum_{i} f_{Ri} = 1, \; i = \; \overline{1, N} \; ; \\ 3) \\ 1 - \min_{i} \left\{ \frac{f_{i}^{0}}{f_{0i}} \right\} \leq \alpha_{R} \leq 1 - \max_{i} \left\{ \frac{f_{i}^{0} - f_{i}}{f_{0i}} \right\}, \; (11) \end{split}$$

если известны все f_{0i} и выполняются условия:

$$f_{0i} \ge 0, \ \sum_i f_{0i} = 1, \ i = \ \overline{1,N} \ ;$$

$$\left[1 - \max_{i \in I_3} \left\{ \frac{f_i - f_i^0}{f_{\pi p i}} \right\} \right]$$

 f_{Ri} — массовая доля і-го компонента в рециркуляте;

 $f_{\rm i}$ — массовая доля і-го компонента на выходе из реактора;

 f_{npi} — массовая доля і-го компонента в отводимом из реактора потоке;

$$\overline{f}_{\!0}$$
, $\overline{f}^{\,0}$, \overline{f} , $\overline{f}_{\!R}$, $\overline{f}_{\!m\!p}$ - векторы составов

потоков соответственно свежей и общей загрузок на выходе из реактора, рециркулята и отводимых из реактора продуктов;

 Γ – множество индексов всех компонентов сырья;

I- множество всех компонентов системы;

 $\kappa_{\rm j}$ – константа скорости j-ой реакции; l – длина участка трубы, м;

M – средняя молекулярная масса пирогаза, кг/кмоль;

 Δn_i — измененное в результате реакций число молей i-го компонента, кмоль/с;

Р – текущее давление в системе, Па;

R – газовая постоянная, $\Pi a \cdot M^3 / (\kappa MOJE K);$

Т – общая температура, К;

V – текущая объемная скорость, M^3/c ;

 α_i' – мольная доля і-го компонента в поступающей на пиролиз смеси.

СПИСОК ЛИТЕРАТУРЫ

- Алиев А.М., Таиров А.З., Гусейнова А.М., Калаушина Я.М., Шахтахтинский Т.Н. // ТОХТ. 2004. Т. 38. № 6. С.693.
- 2. Нагиев М.Ф. Учение о рециркуляционных процессах в химической технологии. Баку: Азернешр. 1965.474с.

C₂-C₄ PARAFİN KARBOHİDROGENLƏRİNİN PİROLİZ PROSESİNİN KİNETİK TƏDQİQİ

A.Z.Tahirov, A.M. Əliyev, M.Z.Kərimov, M. Ə.Həsənov, A.M.Hüseynova, Z.A.Məmmədov, N.R.İsmayılov

«Azərkimya» dövlət şirkətinin «Etilen-Polietilen» zavodunun mərkəzi laboratoriyasında aparılmış tədqiqatlar əsasında C_2 - C_4 parafin karbohidrogenlərinin piroliz prosesinin stexiometrik sxemləri qurulmuş və ona uyğun olan kinetik model tərtib edilmişdir. Modeldə resirkulyasiyanın xüsusiyyətləri nəzərə alınmışdır. Resirkulyasiya nəzəriyyəsinin bəzi müddəalarına baxılmışdır.

KINETIC ANALYSIS OF PYROLYSIS PROCESS FOR PARAFFIN HYDROCARBONS C₂-C₄

A.Z.Tairov, A.M.Aliyev, M.Z.Kerimov, M.A.Gasanov, A.M.Guseynova, Z.A.Mamedov, N.R.Ismaylov

On the basis of laboratory investigations at "Ethylen-Polyethilen" plant of "Azerichemistry" concern, there was drawn up a general stoichiometric scheme of the process of pyrolysis for paraffin hydrocarbons C_2 - C_4 and corresponding kinetic model with due regard for recirculating peculiarities. Some aspects of recirculation theory have been examined.