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Abstract: In this concise review, an emphasis is laid on the important role of superbases as catalysts and
reagents in organic synthesis that so far remain underestimated. Diverse approaches to understand the
superbasicity phenomenon are considered and the definition of superbase is given. Typical compositions of
most widespread superbase systems are systematized and tabulated. The representative classic organic
reactions assisted by superbases are surveyed.
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1. Introduction

The proton transfer reaction (the acid-base interaction) stands second among the most
important fundamental chemical reactions (after the electron transfer). Acids and bases are most
versatile catalysts and reagents in transformations of organic and inorganic matter. That’s why the
controlling proton transfer processes is a key to the targeted synthesis of compounds and materials
with tailor-made properties. The superbase catalysts and reagents are now all more widely used in
organic synthesis due to their fundamental simplicity, accessibility, efficacy and ecological
neutrality as compared to more sophisticated and less “greener” transition and heavy metal-tailored
synthetic auxiliaries. In the light of growing importance of ecological agenda, superbases mostly
designed on alkaline metal cations, particularly on biologically friendly Na* and K*, and anions
such as OH’, OR" and N, deserve to be revisited.

2. Superbase media: what does it mean? A short historical survey

Although organic reactions in the presence of strong bases (carbanion chemistry) are as important
and as widely distributed as acid-catalyzed processes (carbocation and onium cation chemistry), the
term ‘superbase’ has appeared much later than the term ‘superacid’. The latter, seemingly, was
introduced by Gillespie in 1972 [3, 4], who defined superacids as systems more acidic than sulfuric
acid, i.e., systems with acidity function Hy of less than —12. In the glossary of physical organic
chemistry (1982) [5] this definition was given with a remark that the superacid is the system
composed of a Bronsted acid and a Lewis acid.
HA + X = H'AXT]

Bronsted acid Lewis acid superacid

An example of such system is a mixture of fluorosulfonic acid and antimony pentafluoride
(the ‘magic’ acid), having the acidity function Hy < —30, which is 18 orders more acidic than
sulfuric acid [4, 6, 7].
HSOs;F  + SbFs == H'[SbF5SO4FI

"magic" acid

Of interest is the fact that the above mentioned glossary still lacked a definition of the term
‘superbase’.

The superbasicity concept has been defined (1977) [8] and systematically developed on an
example of acetylene chemistry [9-12] by the Irkutsk branch of Academician A. E. Favorsky’s
school. In the joint monograph ‘Fundamental investigations. Chemical sciences’ (1977) [8] we for



the first time defined superbases as follows: “A superbase medium is the medium composed of a
strong base and a solvent or reagent (ligand) capable of specific binding (coordinating) cation to
form the ‘naked’ conjugated counter-anion...”.

3. How to compose superbases?

Obviously, in the light of this concept, the superbasicity definition is in accord with the
‘mirror reflection’ of the superacidity term: a superbase is the complex of a strong ionized base

(Bronsted base) with a ligand which interacts specifically with this base’s cation (Lewis
base) in a poorly anion-solvating medium (as a rule, in the medium of a polar non-hydroxylic
solvent”™ ) [8-12].

M'B- o+ Y = BMYJ"
Bronsted base  |ewis base superbase
M = Li, Na, K, Rb, Cs; [MY]* = NR,
B = R (carbanoin), H, OH, OR, NH, NR;,

Y = ethers (polyethers), amines (polyamines), NH3 cryptands, sulfoxides,
sulfones, amides, phosphine oxides, etc.

A typical superbase is, for example, the system KOBu-t-dimethyl sulfoxide (DMSO), in
which the potassium cation is complexed by DMSO molecules (see experimental and quantum
chemical 4-3G evidences, for example, in [13]), while the poorly solvated t-butoxy anion (see
experimental and quantum chemical 4-3G evidences of increasing anion activity in DMSO, for
example, in [14]) provides a basicity (pKa = 32.2) [15], which is 14 orders higher than that of
aqueous or alcohol alkali solutions.

KOBu-t + Me,SO == [K=—OSMe,]'OBu-t

The most common cations in such systems are alkali metal- or tetralkylammonium cations.
Examples of anions (Bronsted bases) are carbanions, hydride ion, hydroxide-, alkoxide- and amide
anions, and ligands () are such typical Lewis bases as ethers (polyethers), crown ethers, amines
(polyamines), liquid ammonia, phosphines, cryptands, sulfoxides, sulfones, amides, phosphine
oxides, and so on.

In other words, superbases are solvent-separated ion pairs of strong bases or their synergetic
complexes both with themselves and with weaker Lewis bases, possessing enhanced anion activities
(owing to the weakening of their interaction with cations).

Quaternary ammonium bases in two-phase aqueous-organic alkaline media (phase-transfer
catalysis) represent a special kind of superbase systems: the hydroxide ion weakly interacts with a
bulky organic cation and remains virtually unsolvated by a hydrocarbon (most often used organic
phase). Such systems may provide basicity comparable with that of typical superbases (pKa = 34-
41) [10, 16].

4. Representative classic reactions assisted by superbases

Superbase systems are widely applied in organic synthesis. Indeed, their use as catalysts and
reagents had started long before the term appeared and the superbasicity concept was formulated.

Among superbase media, the systems “alkali metal amide — liquid ammonia” are ‘veterans’
with a nearly 200 year experience. They were introduced in chemistry yet by Davi and Gey Lussac
(see references to original works in [17]). A fundamental investigation of the system KNH2/NHj3 g,
was carried out by Shatenshtein [18, 19] who extensively used it for determination of kinetic acidity
of CH-acids, including such weak ones as parafinic hydrocarbons. Advantages and drawbacks of
these superbases are now well known. They are most widely and systematically utilized for carrying

™ A common term ‘aprotonic dipolar’ solvent cannot be considered correct as the majority of such solvents
are typical CH-acids (i.e., they are not aprotonic), while the ‘dipolarity’ (the existence of a dipol) is a
common property of any polar molecule.



out elimination, substitution and addition reactions with participation of highly unsaturated
heteroatomic compounds [20].
Typical superbase systems and examples of reactions they promote are presented in Tables

1-3.
Table 1. Typical lithium-tailored superbase systems and reactions with their assistance
Base Reaction Reference
LiN(Pr-i)2 @[ —_— N [21]
NC :
H
LiOBu-t/DMSO CICH,SO,Ph + PhNO, —> NO,CgH4CH,SO,Ph [22]
LIR/KOR . M
R = Me, Bu-n, Bu-t, Bu-s; © v Mel @ ° o © [23]
R’ = Bu-t, Pr-n, Et,CH, EtsC, EtN B .y Buot
LiINH(CH2)2NH2/H2N(CH2)NH> >NCH2CEC(CH2)nMe — >N(CH2)n+ZCECH [24]
/an\ .
LiBu-n/N N PhSMe — PhSCH, [25]
—
LiBu-n/[2,2,2]-cryptand (Ph),CH, — (Ph),CH [26]
iN(Si 2/18- - | Y + Mel —> MeSCH=CHC=CMe
LiN(SiMe;3),/HMPA®/18-crown-6/THF Q [27]

 Hexamethylphosphoramide.

Table 2. Typical sodium-tailored superbase systems and reactions with their assistance

NO,

Me Me CN
NaOH/NHs PhSCH,CN + j@\ — T\ [28]

O,N NC N\

H

CICH,SO3R + PhNO, —> O,NCgH4CH,SO3R [29]
R = Am-neo, Ph

(PhS);CH + PhNO, —>  p-O,NCgH,CH(SPh), [30]

O,N N(Me)SO,CH,CI Me
T o

NaOH/DMSO SO

SO,Ph

NC NO, {
corsopn + L — ol [28]

b
CICH,CN + PhNO, —> O,NC4zH,CH,CN [32]

. . Ph(R')CHCN + RC=CH — Ph(R')(CN)CCH=CHR
NaOH/DMSO/['NEt3Bz] OH [33]
R = H, Ph; R' = Alk, Bz, Et,N(CH,),

NaOMe/DMSO (Me0),CHC=CMe — MeOCH=CHC(OMe)=CH, [34]




NaOAm-t/[2,2,2]-cryptand

(Ph),CH, — (Ph),CH

[26]

NaNH/THF/[2,2,2]-cryptand (Ph),CH, —= (Ph),CH [26]
PhSCH,CO,Me + PhNO, —>= O2NCgH,CH,CO,Me [32]
NaH/DMSO o CN
@ MeCN OH [35]
D % | N__co,Et
NaH/DMF Q\/ 7N ’ [36]
(CHa)al
Me
CD— ) o7
N/ N/
C=CH
NaCH.SOMe/DMSO @ - [37]
(0] OH
Ph Ph
PhC=CPh —> M [38]
PhC=CH + CO, — > PhC=CCO;H [39]
AN _ N —
NaNH(CHz)sNH2/H2N(CH2)sNH. N(CHz)=CH(CHy)Me —> N(CHj),2C=CH [40]
Table 3. Typical potassium-tailored superbase systems and reactions with their assistance
(Ph)sCH — (Ph)sC [41]
(Ph),CH, — (Ph),CH [41]
CH,
O, — X &
(6] OH
—CHy—c— —>
’ o) OH [43]
KOH/DMSO ( IMS_, CH
(I [44]
(@) OH
Me
(CICH,CH,0),CH, — (CH;=CHO),CH, [45]
t-BUCH,CHBrCl — t-Bu—— [46]
Me
-l e (47

CHECH + H0 ——= =\,

o e

[48]




X

CHEGH + H0 T [47-50]
Me
CH=CH + H,0 —> /\o)\/o\/ [51]
o™
0
CH=CH + H,0 —> /©/ ] /@ [52]
Et Et
CH=CH + (HOCH,),C —> (CH,=CHOCH,),C [53]
_ —CH, . i A\
CH=CH +  )—NoH N [10, 11]
R = H, CH;=CH R
Et "
Me N
B—f= + (HN)C=S —»Mem [54]
OH hid
s
(CHZ=CHCH,),S, + RX = NS SR [55]
R= Me, Et, Pr-n, Pr-i; X =Br, |
3 — =
=~~~ L. [56]
N,
N, PN
RCH,NO, *+ [/) — R NG [57]
N NOH
=7 ¢ sa— [ [12, 58]
e
RXCH=CHCIX —> RXC=CXR
X =Se,R=Me; X=Te, R=Ph [59]
CH=CH + 8% —> ~ N\ [12, 60]
N N
CICH,SOPh + @[\> - @[S\%cmsozph [61]
s
SO,Ph
N N
CICH,SO,Ph + @[ j—» @[ [61]
N N
S0,Ph
KOH/DMSO/MeOH =] [62]
i o O
KOH/DMSO/18-crown-6 —CH,OH + 0, —> —CH=0, —COOH [63]
KOH/DMSO/[Z,2,2]-Cr|ptand (Ph),CH, —»(Ph)zéH [26]
CH,S0,Ph
Nl
KOH/NHs CICH,SO,Ph + QNOZ W NO, [64]

|
N/Ie Me




KOH/MeCN g . g [35]

KOH/HMPA?® CH=CH + H,S — EtSH [60]

KOH/EtsP=0 = 7 + & — | S; [58]
|

KOH*(NaOH)"/RY [(CHR")mY]nR%/CsHs"

-i —> ArCH(Pr-/)CN
R, R'=H AKC;-Cs Y=0,S:m n>1 ArCH,CN + CIPr-j rCH(Pr-i) [65]
KOH/MeO(CH)20Me —CH=0 + 0, —= —COOH [66]
PhSeC(Ph)=C(Me)SO,Ar —> PhCH=C(CH,OH)SO,Ar
KOH/THF/18-crown-6 y [67]
0
+ 0
KOH/THF/ [2,2,2]-criptand 0.0 2 0.0 [26]
0
KOH/Me2S0,/HOBu-t CCly — CCl, [68]
H,C=CHCH,0R —> CH3CH=CHOR [69]
KOBU-/DMSO R = Ph, CgH13-n, Bu-t, HO(CH,); HOCH,CH(Me)
CH=CH + AKSSAlk —> AkSCH=CHSAIk [12, 70]
X S
KOBu-t/DMF | Jve o, - @COOH [71]
N N
r\ N 0
KOBU-UHOBU-UEL0/ N_ N MeCgHSCH,Cl + C=0 —>>L\SC6H4M6 [72]
KHNPh/dioxane CH=CH + H,NPh — PhNHCH(Me)C=CH [73]
KN(Ar)COMe/THF CH=CH + ArNHCOMe —> ArNHCH(Me)C =CH [74, 75]

296% KOH. ° Particle size 100-500 micrometers; prepared by stirring at a rate of 500-10000 rpm (better if ultrasound is
simultaneously applied) at 140°C. ° Also oligomers of polyoxyethylene type, quaternary ammonium salts,
macromolecular amines, ZrO,, TiO,. ¢ Also, there are toluene, xylene and other organic solvents with b. p. > 100°C.

Thus, to superbases we assigned [76, 77] the systems having the Hammet acidity function
(H_.) over 18.5, i.e., systems with basicities which cannot be achieved in hydroxyl-containing
solvents (water and alcohols) due to limitations imposed by the acidity of the medium itself. Earlier,
Bouden [78] added to highly basic systems diluted solutions of alkali metal hydroxides or alkoxides
in DMSO and its mixtures with water and alcohols, which could ionize acids in a higher degree than
0.1 M aqueous alkalis. Superbases of the type “alkali metal alkoxide — DMSO (H,0, alkanol)”” have
been used for building acidity scales since 60-s (see, for example, [79] and references therein).

Quantitative and physical chemical characteristics of some superbase media (mainly,
solutions of bases in DMSO) are given in reviews of Buncel and Wilson [80], Cox and Yates [81],
and in the work of Arnett [17]. There is no opportunity to describe in detail the quantitative
superbasicity aspect in this article. It should only be noted that this problem still has no acceptable
common solution [79]: in fact, due to the approximate character of the Hammet postulate, one has
to build its own acidity scale for each system. As a result, for example, in the review [81], over 400
scales of different acidity functions are compared.

pK, values of conjugated acids of most superbases lie within an interval of 30-40 (Table 4),
that corresponds approximately to the same acidity function H_ interval.



Table 4. pK, Values of conjugated acids of some superbases

Superbase pKa
LiN(Pr-i)2/ THF 40 [82]
LiN(Pr-i)2/HN(Pr-i)z 40 [17]
LINEtHMPA/CgHs 38-40 [83, 84]
NaCH,SOMe/DMSO > 30 [39]
NaNH»/NaOBu-t/ THF > 32 [85]
KOH/DMSO 31.4 [86] (30.5)% [41]
KOBu-t/DMSO 32.2 [86] (~30) [41]
KCH,SOMe/DMSO 35.1[86] (32-34)"
K/INMP® 31 [87]
KHN(CH2)aNH2/H2N(CH2)sNH; (KAPA) 40 [88, 89]
CsNHCgH13 (cyclo)/HaNCsHa; (cyclo) 40 [88, 89]

2 Hereinafter in brackets are given values of acidity function (H_). ® Depending on the base concentration (0.01-1.0 M).
¢ N-Methylpyrrolidone.

Some aspects of strong basicity increase in polar non-hydroxylic solvents (mainly in
DMSO) and the use of such systems in organic synthesis are covered in monographs [79, 90-93].

The highest basicity (H_ ~40) is exhibited by systems of the “alkyllithium — potassium t-
alkoxide” (LIKOR) type which had first been introduced into the chemical practice by Lochmann
[94] and Schlosser [95]. The synergism of two strong bases in this case is due to the same effect of
additional binding of cations due to the formation of associates (weakly bound complexes) [96-99].
The literature concerning these systems is numerous today and continues to expand rapidly (for
example, see reviews [100-102]). Brandsma [103] has shown that the basicity of LIKOR reagents
can be increased even more by adding a third base, tetramethylethylenediamine (TMEDA). For
example, the triple system BuLi/t-BuOK/TMEDA is capable of metallating ethylene [103]. At the
same time, basicities of pairs BuLi/TMEDA [104] and BuNa/TMEDA [105] are insufficient for this
purpose, although they are capable of deprotonating benzene and toluene, respectively.

Preparative aspects of LIKOR reagents and their various modifications have been
comprehensively studied by the Brandsma school [106-111].

Meanwhile, a look into the past makes us recall Ecclesiastes: “Is there any thing whereof it
may be said, See, this is new? it hath been already of old time, which was before us” (Eccl. 1, 10).
In fact, for example, almost forgotten Dumah-Stass reactions of alcohol dehydration (into acid salts)
[112]:

-H, R
RCH,OH +KOH ~———>  C=0
melting KO

or Markownikoff-Zubov [113] or Herbe [114] dimerization of alcohols:

H,0 R
R--OH e /\/K/OK
melting R
~280 °C

in the presence of melted alkali can quite be qualified as processes proceeding under the action of
superbases: alcoholate plays the role of complex-forming agent toward the alkali metal cation.

Shorigin rearrangement (transformation of ethers into alcohols in the presence of sodium
metal) [115] can also be considered as process proceeding under the effect of superbases.

Na OH
NN e
Ph Ph

Carbanion formed upon the interaction of sodium with the methylene group (which acts as a
CHe-acid) here plays the role of a base, while the complex-forming agent toward the sodium cation
is ether itself. Almost 20 years later Wittig repeated this reaction using another superbase system,
phenyllithium-ether [116]. Since then this rearrangement has been bearing his name.



PhLIi/Et,0 OH
R OORZ —> g2
Today this rearrangement can be successfully effected with such typical superbases as
sodium or potassium amide in liquid ammonia.
The driving force of the rearrangement is high thermodynamical stability of the alkoxide ion
as compared to the carbanion:

In recent years, superbase media occupied significant place in the chemistry of acetylene
enriching it with principally new reactions, approaches, and concepts (See, for instance,
monographs and reviews [117-123]). The major achievements in this area will be considered in our
follow-up reviews.

Summary

In conclusion, this compact survey, covering different aspects of superbasicity and its place
in organic chemistry, represents a concise introduction to the superbase-assisted synthesis. The
survey sets an aim to attract attention to a wider application of this powerful synthetic tool, which,
due to its simplicity, availability and ecological neutrality, has robust prospects to replace more
sophisticated and environmentally dangerous transition- and heavy metal-based technologies.
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