SOLID-PHASE EQUILIBRIA IN THE TIBiTe₂-TITbTe₂ SYSTEM

G.I. Alakbarzade

National Aerospace Agency of the Azerbaijani Republic e-mail: <u>alakbarzadegi@gmail.com</u>

Abstract: The solid-phase equilibria in the TlBiTe₂-TlTbTe₂ system were studied by using the powder X-ray diffraction method. Despite isostructural character of the starting compounds (hexagonal structure, Sp. Gr. R-3m), it was shown that the system is characterized by a limited mutual solubility of the initial components. The solubility based on TlBiTe₂ reaches ~45 mol%, and base on TlTbTe₂ is about 22 mol%. The lattice parameters of the intermediate solid solutions were calculated using the powder roentgenograms. The solid solutions obtained are of great interest as potential magnetic topological insulators.

Keywords: TlBiTe₂-TlTbTe₂ system, solid solutions, powder X-ray diffraction, topological insulator.

1. Introduction

Multicomponent heavy metal chalcogenides, including thallium, are of great interest as prospective functional materials with different properties such as magnetic, optical, thermoelectric[1-14]. Moreover, new characteristics of topological effects have been realized experimentally in chalcogenides such as PbBi₆Te₁₀, TlBiX₂, Pb_{1-x}Sn_xTe [14-17].

Purposeful changes in the composition of the above compounds can lead to optimization of functional properties of the above materials. For this, it is necessary to study systems consisting of structural analogs, since it can be expected that they form wide areas of solid solutions [18-20].

Earlier, we investigated some systems, characterized by formation of variable composition phases: Tl₄PbTe₃-Tl₉GdTe₆-Tl₉BiTe₆ [21], Tl₉SbTe₆-Tl₉Gd(Tb)Te₆ [22].

The aim of the present work is the investigation of the mutual solubility of $\,$ components in the $TlBiTe_2$ - $TlTbTe_2$.

TlBiTe₂ melts congruently at 820 K [23] and crystallizes in a hexagonal structure (Sp. Gr.R- $\bar{3}$ m) with parameters: a=4.526; c=23.12 Å; z=3 [24, 25].

TlTbTe₂ compound is structural analogue of TlBiTe₂ with lattice parameters: a = 4.416; c = 24.27 Å; z = 3 [26].

The isostructural character of initial compounds makes it possible to expect the formation of wide areas of substitutional solid solutions between them.

2. Experiments and results

2.1. Materials and synthesis

Initial compounds of TlBiTe₂ and TlTbTe₂ were synthesized by direct melting of high purity elements. The provenance and purity of the elements used in this investigation are shown in Table 1.

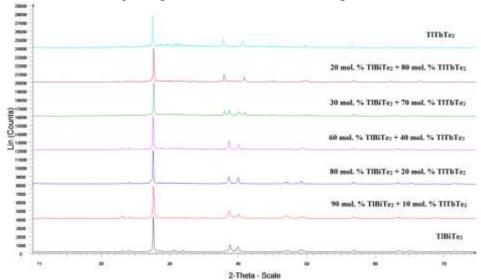
Table 1. Provenance and purity of the materials used in this investigation

Chemical	Mass	Source	CAS No	Form	Purification and
	fraction of				purity analysis
	Purity				methods
Bismuth	0.99999	Alfa Aesar	7440-69-9	broken	as stated by the
		(Germany)		ingots	supplier
Thallium	0.99999	Alfa Aesar	7440-28-0	rod	-"-
		(Germany)			

Tellurium	0.9999	Alfa Aesar	13494-80-9	broken	-"-
		(Germany)		ingots	
Terbium	0.999	Alfa Aesar	7440-27-9	pieces	_"-
		(Germany)			

The synthesis of initial components was carried out in an evacuated (~ 10⁻²Pa) quartz ampoule. To achieve an equilibrium state, after synthesis, the intermediate ingot of the TlBiTe₂ was subjected to heat treatment 700 K for 500 h and cooled in the furnace.

The synthesis of the TITbTe₂ was carried out by means of the ceramic method. First, the quartz tube was heated slowly to 1000 K in a furnace, allowed to remain at 1000 K for 100 h, and then slowly cooled down to room temperature. An intermediate ingot of TITbTe₂ was crushed in an agate mortar, pressed into pellets and then, the heating procedure was repeated at 900 K for 500 h.


Intermediate alloys of the TlBiTe₂-TlTbTe₂ system were also synthesized by the ceramic method by melting of the pre-synthesized ternary compounds at 1000 K in evacuated quartz tubes with subsequent thermal annealing at 750 K (1000h.). Then the samples were ground, thoroughly mixed, pressed into tablets and annealed under the same conditions.

2.2. Methods

We used the X-ray diffraction analysis (Bruker D8 diffractometer, CuK_{α} radiation) in order to control the purity of the synthesized compounds. The analysis was carried out between $10^{\circ} \le 20 \le 70^{\circ}$ at a room temperature. The lattice parameters of initial compounds and intermediate alloys were calculated by indexing powder patterns using Topas V3.0 software (Table 2). Calculated lattice parameters of TlBiTe₂ and TlTbTe₂ were close to the corresponding literature data [24, 26].

3. Results and discussion

Fig.1 presents powder X-ray diffraction patterns of some annealed intermediate alloys. The diffraction patterns of alloys containing 60, 80 and 90 mol% TlBiTe₂ are qualitatively similar to those for pure TlBiTe₂ while alloy 20 mol.% TlBiTe₂ has a diffraction pattern similar to TlTbTe₂. X-ray diffraction patterns of alloys with compositions of 30 mol% TlBiTe₂ consist of a set of diffraction lines of hexagonal phases with both initial compounds.

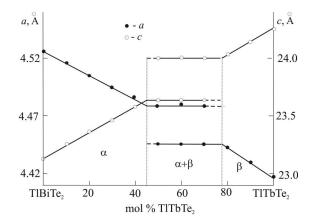


Fig.1. Powder X-ray diffraction patterns of some annealed intermediate alloys of the TlBiTe₂-TlTbTe₂ system

In order to determine the mutual solubility of initial compounds, we constructed concentration dependences of the hexagonal lattice parameters (Table 2, Fig. 2). These dependencies have fracture points at compositions of ~22 and ~45 mol% TlBiTe₂ which correspond to limiting compositions of α - and β -solid solutions based on TlTbTe₂ and TlBiTe₂, respectively. In the $\alpha + \beta$ two-phase region, the lattice periods of the two coexisting phases have constant values regardless of alloys' overall composition. Within the homogeneity region of the α - and β phases, the lattice constants is a linear function of the composition.

Table 2. Phase compositions and crystallographic parameters of TlBiTe₂-TlTbTe₂ phases

Compositions, % TlBiTe ₂	Phase compositions	Hexagonal lattice parameters, Å
0 (TITbTe ₂)	α	a = 4.416; $c = 24.27$ Å; $z = 3$
10	α	a = 4.431; c = 24.140
20	α	a = 4.443; c = 24.043
30	$\alpha+\beta$	α – <i>phase:</i> a =4.446; c =24.001
		β – phase: $a = 4.478$; $c = 23.441$
40	$\alpha+\beta$	$\alpha - phase: a = 4.448; c = 23.999$
		β – <i>phase</i> : $a = 4.483$; $c = 23.501$
50	$\alpha+\beta$	α – <i>phase: a</i> =4.447; <i>c</i> =24.025
		β – phase: $a = 4.479$; $c = 23.482$
60	β	<i>a</i> =4.488; <i>c</i> =23.581
70	β	<i>a</i> =4.495; <i>c</i> =23.483
80	β	<i>a</i> =4.506; <i>c</i> =23.374
90	β	<i>a</i> =4.518; <i>c</i> =23.542
100	β	a = 4.526; $c = 23.12 Å$; $z = 3$

Fig.2. Concentration dependences of hexagonal lattice parameters of some annealed alloys of the TlBiTe₂-TlTbTe₂ system

It should be noted that, according to the data of [27], in the TlSbTe₂-TlTbTe₂ system, the solubility based on initial compounds reached 30 and 10 mol%, respectively. Somewhat higher mutual solubility in the TlBiTe₂-TlTbTe₂ system seems to be related to closer crystallographic radii of the Tb (1.063Å) and Bi (1.17Å) than that between Tb (1.063Å) and Sb (0.9Å) [28].

4. Conclusion

The formation of a wide area of solid solutions based on TlBiTe₂ (45 mol%) is established in the TlBiTe₂-TlTbTe₂ system based on the results of the powder X-ray diffraction analysis. The solubility based on TlTbTe₂ does not exceed 22 mol%. The crystal lattices parameters of the

obtained solid solutions are calculated. The solid solutions obtained are of great interest as potential magnetic topological insulators.

Acknowledgments

The work has been carried out within the framework of the international joint research laboratory "Advanced Materials for Spintronics and Quantum Computing" (AMSQC) established between the Institute of Catalysis and Inorganic Chemistry of ANAS (Azerbaijan) and Donostia International Physics Center (Basque Country, Spain).

References

- 1. Alonso-Vante N. Chalcogenide Materials for Energy Conversion: Pathways to Oxygen and Hydrogen Reactions. Publisher Springer International Publishing AG. 2018.
- 2. Ahluwalia G.K. (Ed.). Applications of Chalcogenides: S, Se, and Te. Springer, 2016.
- 3. Babanly M.B., Yusibov Y.A., Abishev V.T. Ternary Chalcogenide Based on Copper and Silver. BSU Publisher, 1993.
- 4. Kalkan N., Bas H. Electrical and Switching Properties of TlBiSe₂ Chalcogenide Compounds *J. Electronic Mater.* 2015, vol. 44, no.11, pp. 4387-4391.
- 5. Chi H., Liu W., Sun K., Su X., Wang G., Lošt'ák P., Kucek V., Drašar Č, Uher C. Low-temperature transport properties of Tl-doped Bi₂Te₃ single crystals. *Phys. Rev. B.* 2013, vol. 88, p. 045202.
- 6. Ding G., He J., Cheng Z., Wang X. and Li S. Low lattice thermal conductivity and promising thermoelectric figure of merit of Zintl type TlInTe₂. *J.Mater. Chem.* 2018, vol. 6, pp. 13269-13274
- 7. Shah W.H., Khan W.M., Tajudin S., Tufail M., Syed W.A. Optimization of power factor in Sn doped Tl_{10-x}Sn_xTe₆ thermoelectric chalcogenidenano-materials. *Chalcogenide Letters*. 2017, vol. 14, no. 5, pp. 187 193.
- 8. Shi Y., Assoud A., Ponou S., Lidin S., Kleinke H. A new material with a composite crystal structure causing ultralow thermal conductivity and outstanding thermoelectric properties: Tl₂Ag₁₂Te_{7+δ}. *J. Am. Chem. Soc.* 2018, vol. 140, no. 27, pp. 8578-8581.
- 9. Bangarigadu-Sanasy S., Sankar C.R., Dube P.A., Greedan J.E., Kleinke H. Magnetic properties of Tl₉LnTe₆, Ln = Ce, Pr, Tb and Sm. *J.Alloys. Compd.* 2014, vol. 589, pp. 389–392.
- 10. Piasecki M., Brik M.G., Barchiy I.E., Ozga K., Kityk I.V., El-Naggar A.M., Albassam A.A., Malakhovskaya T.A., Lakshminarayana G. Band structure, electronic and optical features of Tl₄SnX₃ (X= S, Te) ternary compounds for optoelectronic applications. *J.Alloys Compd.* 2017, vol. 710, pp. 600-607.
- 11. Aswathy V.S., Sankar C.R., Varma M.R., Assoud A., Bieringer M., Kleinke H. Thermoelectric properties and thermal stability of layered chalcogenides, TlScQ₂, Q = Se, Te. *Dalton Trans.* 2017, vol. 46, pp. 17053-17060.
- 12. Tan G., Zhao L-D, Kanatzidis M.G. Rationally Designing High-Performance Bulk Thermoelectric Materials. Review. *Chem. Rev.* 2016, vol. 116, no. 19, pp. 12123-12149.
- 13. Sankar C.R., Bangarigadu-Sanasy S., Kleinke H. Thermoelectric properties of TlGdQ₂ (Q=Se, Te) and Tl₉GdTe₆. *J. Electron. Mater.* 2012, vol. 41, pp. 1662-1666.
- 14. Banik A., Roychowdhury S. and Biswas K. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials. *Chem. Commun.* 2018, vol. 54, pp. 6573-6590.
- 15. Singh B., Lin H., Prasad R., Bansil A. Role of surface termination in realizing well-isolated topological surface states within the bulk band gap in TlBiSe₂ and TlBiTe₂. *Phys. Rev B*. 2016, vol. 93, pp. 085113-1–085113-8.
- 16. Papagno M., Eremeev S.V., Fujii J., Aliev Z.S., Babanly M.B., Mahatha S.K., Vobornik I., Mamedov N.T., Pacilé D., Chulkov E.V. Multiple coexisting Dirac surface states in three-

- dimensional topological insulator PbBi₆Te₁₀. ACS Nano. 2016, vol. 10, pp. 3518–3524.
- 17. Pielmeier F., Landolt G., Slomski B., Mu S., Berwanger J., Eich A., Khajetoorians A., Wiebe J., Aliev Z.S., Wiesendanger R., Osterwalder J., Chulkov E.V., Giessibl F.J., Hugo Dil, Babanly M.B. Response of the topological surface state to surface disorder in TlBiSe₂. *New J. Phys.* 2015, vol. 17, p. 023067-8.
- 18. Andreev O.V., Bamburov V.G., Monina L.N. Phase equilibria in the sulfide systems of the 3d, 4f-elements. Ekaterinburg: Editorial Publication Department of the UR RAS. 2015.
- 19. Babanly M.B., Chulkov E.V., Aliev Z.S., Shevelkov A.V., and Amiraslanov I.R. Phase diagrams in thematerials science of topological insulators based on metal chalcogenides. *Russ. J. Inorg. Chem.* 2017, vol. 62, no. 13, pp.1703–1729.
- 20. Imamaliyeva S.Z., Babanly D.M., Tagiev D.B., and Babanly M.B. Physicochemical Aspects of Development of Multicomponent Chalcogenide Phases Having the Tl₅Te₃ Structure: A Review. *Russ. J.Inorg. Chem.* 2018, vol. 63, pp. 1703-1724.
- 21. Imamaliyeva S.Z., Alakbarzade G.I., Salimov Z.E., Izzatli S.B., Jafarov Ya.I., Babanly M.B. The Tl₄PbTe₃-Tl₉GdTe₆-Tl₉BiTe₆ isopleth section of the Tl-Pb-Bi-Gd-Te system. *Chemical Problems*. 2018, no. 4, pp. 495-504.
- 22. Imamaliyeva S.Z., Gasanly T.M., Gasymov V.A., Babanly M.B. Phase relations in the Tl₉SbTe₆-Tl₉GdTe₆ and Tl₉SbTe₆-Tl₉TbTe₆ systems. *Chemical Problems*. 2017, no.3, pp. 241-247.
- 23. Babanly M.B., Akhmadyar A., Kuliyev A.A. The Tl₂Te-Bi₂Te₃-Te system. *Russ. J.Inorg. Chem.* 1985, vol. 30, no. 9, pp. 2356-2361.
- 24. Hockings E.F., White J.G. The crystal structures of TlSbTe₂ and TlBiTe₂. *Acta Crystallographica*. 1961, vol. 14, p. 328.
- 25. Pradel A., Tedenac J.C., Brun G., Maurin M. Mise au point dans le ternaire Tl-Bi-Te. Existence de deux phases nonstoechiometriques de type TlBiTe₂. *J. Sol. Stat. Chem.* 1982, vol.5, no.1, pp. 99-111.
- 26. Duczmal M. Structure, własciwości magnetzcyne i pole krzstalicyne w potrojnzch chalkogenkach lantonowcow i talu TlLnX₂ (X=S, Se lub Te). *Monografie*, Politechniki Wrocławskiej. Wrocław. 2003.
- 27. Alakbarzade G.I., Imamaliyeva S.Z., Kazimova E.M., Gasymov V.A. Roentgenograpjic investigation of solid-phase equilibria in the TlSbTe₂-TlTbTe₂ system. *Azerb.Chem.J.*, 2019, no. 3, pp. 84-87.
- 28. Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallographica*. 1976, vol. A32, pp. 751-767.

TlBiTe2-TlTbTe2 SİSTEMİNDƏ BƏRKFAZA TARAZLIQLARI

Q.İ. Ələkbərzadə

Azərbaycan milli aerokosmik agentliyi e-mail: alakbarzadegi@gmail.com

İlk dəfə olaraq TlBiTe₂-TlTbTe₂ sistemində bərkfaza tarazlıqları rentgenfaza analizi üsulu ilə tədqiq olunmuşdur. Ovuntu rentgenoqramları əsasında təyin olunmuş qəfəs parametrlərinin tərkibdən asılılıq qrafirkləri əsasında müəyyən edilmişdir ki, TlBiTe₂ əsasında həllolma ~45 mol.%, TlTbTe₂ əsasında isə 22 mol% təşkil edir. Alınmış bərk məhlullar potensial maqnit xassəli topoloji izolyator materialları kimi maraq doğurur.

Açar sözlər: $TlBiTe_2$ - $TlTbTe_2$ sistemi, bərk məhlullar, rentgenfaza analizi, topoloji izolyator.

ТВЕРДОФАЗНЫЕ РАВНОВЕСИЯ В СИСТЕМЕ TIBiTe₂-TITbTe₂

Г.И. Алекберзаде

Национальное аэрокосмическое агентство Азербайджана e-mail: <u>alakbarzadegi@gmail.com</u>

Впервые методом рентгенфазового анализа изучены твердофазные равновесия в системе $TlBiTe_2$ - $TlTbTe_2$. Установлено, что несмотря на изоструктурность исходных соединений (гексагональная структура, пр.гр R-3m), данная система характеризуется ограниченной взаимной растворимостью компонентов. Растворимость на основе $TlBiTe_2$ составляет ~45 мол%, а на основе $TlTbTe_2$ - 22 мол%. На основании порошковых дифрактограмм рассчитаны параметры кристаллической решетки твердых растворов. Ключевые слова: система $TlBiTe_2$ - $TlTbTe_2$, твердые растворы, порошковая рентгенография, топологический изолятор.