СИНТЕЗ, ВЫРАЩИВАНИЕ МОНОКРИСТАЛЛОВ И РЕНТГЕНОСТРУКТУРНЫЕ ИССЛЕДОВАНИЯ СОЕДИНЕНИЙ СИСТЕМЫ Ga_xIn_xS₃-Fe_x

И.Б.Асадова

Азербайджанская государственная нефтяная академия

Разработаны технологические условия синтеза и роста кристаллов системы $Ga_xIn_xS_3$ - Fe_x . Анализ полученных результатов показал, что $GaFeS_3$ кристаллизуется в гексагональной, $FeInS_3$ в кубической, а $Ga_{0.5}Fe_{0.25}In_{1.25}S_3$ - в ромбоэдрической решетке. Вычислены периоды кристаллических решеток всех полученных соединений.

Фазовые равновесия в квазибинарном разрезе Ga_2S_3 – In_2S_3 впервые исследованы в было установлено работах [1–3], где образование одной тройной фазы GaInS₃, плавящейся c разложением. Следует отметить, что в этих работах имеются заметные разногласия в геометрической структуре, диаграмме состояния и значениях параметров гексагональной ячейки GaInS₃. Так в [1] для GaInS₃ приводятся значения a=3.86, c=16.50 Å, a в [2] a=3.85, c=17.46 Å. С целью влияния разновалентных выяснения атомов, имеющих тетраэдрические координа стабилизацию полиморфных модификаций GaInS₃, авторы работ [4,5] тетраэдрически частично заменили расположенные атомы Ga и In атомами Cu и Mn (сохраняя общий баланс валентности).

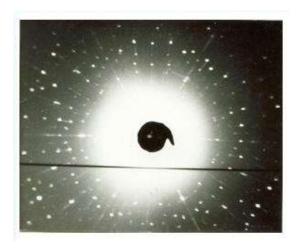
Ранее нами [6,7] были синтезированы и изучены физико-химические свойства соединений $Ga_{0.5}Fe_{0.25}In_{1.25}S_3$.

Цель настоящей работы - изучение фазового равновесия, синтез и выращивание монокристаллов соединений системы $Ga_xIn_xS_3$ - Fe_x .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез сплавов системы $Ga_xIn_xS_3$ - Fe_x проводили из особочистых элементов в эвакуированных кварцевых ампулах при максимальной температуре $850-1000^{\circ}C$. Применяя усовершенствованный вариант прямого синтеза, были приготовлены навески (\sim 5 Γ) для получения образцов состава $GaFeS_3$ ÷ $Ga_{1.5}Fe_{0.5}S_3$, $FeInS_3$ ÷ $In_{1.5}Fe_{0.5}S_3$ для начальных фаз и $Ga_{0.75}Fe_{0.25}InS_3$, $Ga_{0.5}Fe_{0.25}InS_3$, $Ga_{0.5}Fe_{0.25}InS_3$,

 $Ga_{0.25}Fe_{075}InS_3$ и $Ga_{0.25}Fe_{0.25}In_{1.5}S_3$ для промежуточных фаз.


Следует отметить, ЧТО синтез исследуемых сложных сплавов проводили примерно в одинаковых условиях (температура, остаточное давление (10⁻³ мм рт.ст) выдержка и охлаждение). Для синтеза образцов указанных составов ампулы со стехиометрической смесью после откачки поместили в дополнительно нагретую до 500°С печь так, чтобы «холодная» часть осталась снаружи для охлаждения паров серы. После прекращения выделения паров серы ампулы полностью загружали в печь и температуру поднимали до $1000-1150^{\circ}$ C. часовой выдержки при данном режиме температуру медленно снижали до 600°С и выдерживали при этой температуре в течение недели для гомогенизации. Для устранения механических дефектов синтезированные образцы растирали, прессовали и повторно помещали в эвакуированную и запаянную ампулу с размесоответствующими предыдущему рами. (1=18-20 cm,d=1.0-1.2синтезу которую нагревали до 1100°C и медленно охлаждали в течение 24 часов. Визуальное наблюдение полученных образцов показало, что все они почти одинаковы, т.е. однофазны.

Синтезированные вещества состоят из зернистого агрегата, имеют темнокоричневый цвет различных оттенков зависимости от содержания железа в результате они существенно составе. В ПО цвету отличаются otматричных слоистых фаз типа GaInS₃. Наблюдения под микроскопом показали, что весь зернистый агрегат представляет собой совокупность хорошо ограненных кристалликов в форме

тетраэдров и октаэдров различных размеров.

Монокристаллы сплавов системы $Ga_xIn_xS_3$ - Fe_x выращивали методом Бриджмена. Кристаллизацию из расплава по методу Бриджмена осуществляли в следующем режиме: количество заранее синтезированного вещества $\sim 5-6$ г, высота расплава - 30 мм, диаметр контейнера из кварца - 8 мм, начальная температура ~ 1273 K, скорость охлаждения ~ 290 K/час,

зона отжига 673 К и время отжига 30 часов. Результат опыта был успешным. Вся масса образца оказалась кристаллизованной в форме разноориентированных кристаллических блоков, которые обладали совершенной спайностью и легко раскалывались на тонкие слои нужной формы и размеров. О качестве выращенных монокристаллов можно судить по приведенной лауэграмме (рис. 1).

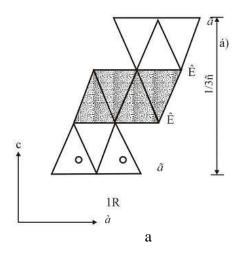
Рис. 1. Лауэграмма образца $Ga_{0.5}Fe_{0.5}InS_3$.

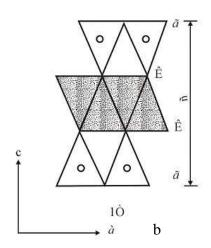
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для определения параметров кристаллической решетки, симметрии и структурного типа были проведены следующие рентгенодифракционные исследования: 1) методами Лауэ и качаний юстированы кристаллографические направления и определены их значения; 2) получены рентгеноотражения от плоскопараллельных плоскостей для определения характера дифракции типа ool;

3) снята дифрактограмма порошка (ДРОН-2.0; Ni-фильтр, предел $0.5^0 < 20 < 70^0$).

На основе расчетов и анализа полученных результатов установили, что монокристаллы $Ga_{0.5}Fe_{0.25}In_{1.25}S_3$ кристаллизуются в ромбоэдрической решетке с периодами, в гексагональной установке, а=3.76×2, c=36.606 Å, пр группа R3m, Z=16, V=1817, 57 ų, V_S =37.86 ų (таблица).


Кристалл	юграфически (е константы	соединений	системы	$Ga_xIn_xS_3$ -Fe _x
----------	---------------	-------------	------------	---------	--------------------------------


Состав	Сингония	a, Å	c, Å	$V, Å^3$	V_S , $Å^3$	S _{peht.}	Пр. Гр.	Z
GaFeS ₃	гексаг.	3.85	29.68	382.0	38.2	3.21	P6 ₃ mc	3.33
$Ga_{0.5}Fe_{1.5}S_3$	//	3.90	30.04	384.2	33.4	3.10	P6 ₃ mc	3.33
$Ga_{0.25}Fe_{0.25}In_{1.5}S_3$	Ромбоэд.	7.57	36.61	1815	37.8	4.10	R3m	16.0
$Ga_{0.5}Fe_{0.5}InS_3$	Тригон.	7.62	12.14	600	38.0	3.99	P3m1	5.33
$Ga_{0.5}Fe_{0.25}In_{1.25}S_3$	Ромбоэд.	7.54	36.58	1801	37.51	3.75	R3m	16.0
$Ga_{0.25}Fe_{0.75}InS_3$	Тригон.	7.54	12.13	598.2	37.8	2.51	P3m1	3.33
$Ga_{0.75}Fe_{0.25}InS_3$	//	7.51	12.10	596	38.0	2.58	P3m1	3.33
FeInS ₃	Кубич.	10.66	-	1214	40.1	3.76	Fm3m	10.33
$Fe_{0.5}In_{1.5}S_3$	Кубич.	10.68	-	1220	38.1	3.77	Fm3m	10.33

Кристаллохимическим анализом установлено, что исследуемые монокристаллы являются трехпакетным политипом ряда $c=12\times n$ Å и структура их составляет политип на базе структуры $Ga_{0.5}In_{1.5}S_3$ в упорядоченном варианте. На рис. 2 (а,б) приведен вариант распределения атомов в решетке.

Следует отметить, что сравнение вычисленных интенсивностей отражений типа ool и hkl для структурной модели показанной на рис. 2 с их экспериментальными значениями указывает на хоро-

шее соответствие между ними, достоверности выбранной убеждает в модели структуры. Следовательно, при последовательности позиций a(0;0); b(1/3j-1/3); c(-1/3; 2/3) плотноупакованных атомов серы и образованных ими катионных полиэдрических позиций a, b, c состав $Ga_{0.5}Fe_{0.25}In_{1.5}S_3$ окажется АсСаВвВП типом. При этом соответствующая упаковка будет характеризоваться вариантом гккПг; здесь г – оксагональная, кубическая, a П пустой слой.

Рис.2. План кристаллической структуры однопакетного $Ga_{0.5}Fe_{0.5}InS_3$ (а) и трехпакетного $Ga_{0.5}Fe_{1.25}InS_3$ (б)

Исходя из теории плотной упаковки образования политипных и принципа структур [8], можно установить, что образование политипной структуры осуществляется на полным и различным заполнением тетраэдрических пустот, а статистическое заполнение октаэдрических пустот приводит к упорядочению решетки по базису, в результате чего удваивается «а» в два раза. Следует отметить, что в отличие от заменяющихся атомов Sn и Cu, атомы железа стабилизируют образование другого ряда политипа, чем одно- и двухвалентные катионы.

ЛИТЕРАТУРА

1. Амброс В.П., Андроник И.Я., Мушинский В.П. Некоторые вопросы химии и физики полупроводников сложного состава. Ужгород: Изд-во УГУ.1970. с.238.

- 2. Заргарова М.И., Гамидов Р.С. // Изв. АН СССР, Неорган. материалы. 1969. т.5. №5. С.371.
- 3. Гамидов Р.С. /Автореф. дисс... докт. хим. наук. Баку: БГУ. 1973. 45 с.
- Гусейнов Г.Г., Алиев И.Г., Рзаев С.С. и др. // Изв. АН России. Неорган. материалы. 1993. т.29. №4. С. 483.
- 5. Амирасланов И.Р., Валиев Р.Б., Асадов Ю.Г. и др. // Изв. АН СССР. Неорган. материалы. 1990. т.26. №3. С.642.
- 6. Гусейнов Г.Г., Гасымов В.А., Асадова И.Б., Алиев О.М. // Азерб. хим. журн., 2002. №4. С.127.
- 7. Гусейнов Г.Г., Мусаева Н.Н., Кязымов М.Г. и др. // Неорган. материалы.2003. т.39. №9. С.1078.

8. Шаскольская М.П. Кристаллография. М. 1976. 391c.

$Ga_xIn_xS_3$ - Fe_x СИСТЕМИНІ́N БИРЛЯШМЯЛЯРИНІ́N СИНТЕЗИ, МОНОКРИСТАЛЛАРЫНЫН АЛЫНМАСЫ ВЯ РЕНТЭЕНГУРУЛУШ ТЯДГИГИ

И.Б.Ясядова

 $Ga_xIn_xS_3$ - Fe_x системиніп бирляшмяляриніп синтези вя онларын монокристалларынын алынма технолоэийасы щазырланмышдыр. Алынмыш нятиъялярин анализи эюстярмишдир ки, $GaFeS_3$ щексагонал, $FeInS_3$ кубик, $Ga_{0.5}Fe_{0.25}In_{1.25}S_3$ ися ромбоедрик гяфясдя кристаллашыр. Алынмыш бцтин бирляшмялярин гяфяс сабитляри щесабланмышдыр.

SYNTHESIS, OBTAINING OF MONO-CRYSTALS AND STUDY OF COMPOUNDS OF Ga_xIn_xS₃-Fe_x SYSTEMS

I.B.Asadova

Mono-crystals of $Ga_xIn_xS_3$ -Fe_x systems have been synthesized and obtained. It established that $GaFeS_3$ is crystallized in hexagonal, FeInS₃ in cubic and $Ga_{0.5}Fe_{0.25}In_{1.25}S_3$ rhombohedral syngony.