УДК 541.64:547.6.

ИССЛЕДОВАНИЕ ЗАКОНОМЕРНОСТЕЙ ПОЛУЧЕНИЯ И СВОЙСТВ ПОЛИЭПОКСИДОВ ОЛИГО-1,3-ДИГИДРОКСИФЕНИЛЕНА

Э.Т.Асланова, Б.А.Мамедов

Институт полимерных материалов Национальной АН Азербайджана AZ 5004 Сумгайыт, ул С. Вургуна, 124; e-mail:ipoma@science.az

Исследованы закономерности синтеза и свойства полиэпоксидов олиго-1,3дигидроксифенилена (ОДГФ). Полиэпоксиды ОДГФ получены дегидрохлорированием продуктов взаимодействия ОДГФ с эпихлоргидрином. Они по клеющей
способности находятся на уровне фенолформальдегидных смол и образуют
высококачественные покрытия на металлах и стекле с достаточно хорошими
физико-механическими показателями.

Ключевые слова: олигодигидроксифенилен, пропилхлоргидриновые эфиры, полиэпоксиды.

Реакция взаимодействия фенольных гидроксильных групп с оксирановым кольцом эпоксидных соединений лежит в основе синтеза термореактивных полиэпоксидов и эпоксиолигофенольных блоксополимеров [1-3]. Полученные при этом полимерные материалы обладают высокими прочностными и адгезионными свойст-

вами, диэлектрическими показателями, термостойкостью и находят широкое применение в электротехнике и микроэлектронике [4-6].

В связи с этим настоящая работа была посвящена изучению закономерностей синтеза и свойств полиэпоксидов олиго-1,3-дигидроксифенилена.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Олиго-1,3-дигидроксифенилен (1,3-ОДГФ) и его пропилхлоргидриновые эфиры были получены по методике [7].

Получение глицидилового эфира 1,3-ОДГФ осуществляли путем дегидрирования 3-хлор-2-оксипропилового эфира 1,3-ОДГФ. 12-15г эфира ОДГФ растворяли в 0.25 л бутанола и добавляли 40 мл 40%ного водного раствора NaOH при 343÷353К

в течение 2 часов. После завершения реакции дегидрохлорирования реакционную смесь нейтрализовывали пропусканием через нее углекислого газа. Далее отгоняли растворитель, полученный продукт промывали горячей дистиллированной водой от солей и сушили в вакуумном шкафу (10⁻¹ мм.рт.ст.) при 373÷383К до постоянной массы.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В результате реакции взаимодействия эпихлоргидрина с 1,3-ОДГФ (\overline{M}_w =890, \overline{M}_n =560, содержание гидроксильных групп — 30.3%) в присутствии

ТЭА ранее нами были синтезированы пропилхлоргидриновые эфиры олиго-1,3-дигидроксифенилена (1,3-ОДГФ) по следующей схеме:

OH
$$+ CH_2-CH-CH_2C1$$
 $\xrightarrow{T9A}$ $OCH_2-CH-CH_2C1$ OH $OCH_2-CH-CH_2C1$

Полученные пропилхлоргидриновые эфиры ОДГФ – порошки коричневого цвета, хорошо растворимые в ацетоне, ДМФА, ТГФ, дихлорэтане. Их растворимость в хлоруглеводородах увеличивается с ростом в их составе

пропилхлоргидриновых групп. На уменьшение в составе полученных эфиров дигидроксифениленовых звеньев указывает снижение и потеря растворимости в водно-щелочных растворах.

Табл. 1. Составы и некоторые характеристики пропилхлоргидриновых эфиров ОДГФ

No	Степень	Пропилхлор.	Элементный состав		7.7		$\overline{\mathrm{M}}_{\mathrm{w}}/\overline{\mathrm{M}}_{\mathrm{n}}$	T _{meч} ,	
п.п.	прев., %	гидр. груп., %	С	Н	Cl	$M_{ m w}$	\mathbf{M}_{n}	$NI_{\rm w}/NI_{\rm n}$	K
1.	0	0	66.10	4.11	0	890	560	1.59	393
2.	20.3	15.5	64.61	4.09	5.87	1010	650	1.55	385
3.	31.4	21.9	62.21	4.16	8.32	1100	690	1.59	381
4.	44.7	28.8	60.80	4.30	10.95	1190	740	1.61	375
5.	59.2	35.3	59.50	4.44	13.40	1290	780	1.65	368

Дегидрохлорирование пропилхлоргидриновых эфиров 1,3-ОДГФ производилось обработкой их раствора в бутаноле 40%-ным водным раствором NaOH по следующей схеме:

OH OH OH

$$+ \text{NaOH}$$
 $OCH_2 - CH - CH_2$
 $OCH_2 - CH - CH_2$

Для выяснения оптимального режима дегидрохлорирования опыты проводились с пропилхлоргидриновым эфиром 1,3-ОДГФ с содержанием пропилхлоргидриновых групп 35.3%. Результаты исследований приведены в табл.2. Видно, что оптимальный режим

проведения реакции дегидрохлорирования пропилхлоргидриновых эфиров 1,3-ОДГФ следующий: мольное соотношение эф.ОДГФ: NaOH=0.9; [Эф. ОДГФ]0=1.0 моль/л; [NaOH]0=5.0 моль/л; T=353K; $\tau=3$ часа; (τ ввода p-pa NaOH=2 часа).

Табл. 2. Эпоксидирование пропилхлоргидриновых эфиров 1,3-ОДГФ в бутаноле водным раствором NaOH. [Пропилхлоргидриновый эфир 1,3-ОДГФ] $_0 = 1.0$ моль/л. [NaOH] $_0 = 5.0$ моль/л.

No	[Эф. ОДГФ] ₀ : : [NaOH] ₀ ,	Продолжительность, час		Т, К	Эпок.	Содерж.	Превращ. Пропил-
110	. [NaOH] ₀ , МОЛЬ	Добавки NaOH	Общая	1, K	группы, %	хлора, %	хлоргидр. групп, %
1	1.0	0.5	3	353	10.3	5.77	59.5
2	1.0	1.0	3	353	11.2	4.89	65.4
3	1.0	1.5	3	353	12.6	3.92	72.3
4	1.0	2.0	3	353	14.1	2.91	80.0
5	1.0	3.0	3	353	14.5	2.61	82.1
6	1.0	2.0	3	358	12.3	2.35	82.4
7	1.0	2.0	3	348	12.8	3.89	73.1
8	1.0	2.0	3	343	11.4	4.91	65.8
9	0.90	2.0	3	353	14.7	2.47	83.1
10	0	2.0	3	353	11.8	2.25	83.2

Синтезированные полиэпоксиды 1,3-ОДГФ являются коричневыми продуктами, растворимыми в диоксане, ацетоне, ТГФ, ДМФ и других полярных органических растворителях. В зависимости от условий проведения дегидрохлорирования эпоксидное число полиэпоксидов меняется В интервале 10.3÷14.7%, а степень превращения пропилхлоргидриновых эфиров – в интервале 59.5÷83.2%, т.е. некоторая часть пропилхлоргидриновых групп остается в составе 1,3-ОДГФ. ИК-спектры полиэпоксидов полиэпоксидов 1,3-ОДГФ отличаются от таковых для пропилхлоргидриновых эфиров лишь

появлением новой полосы поглощения при 910 см⁻¹, характерной для эпоксидного кольца, и снижением относительной интенсивности полосы поглощения С - Cl-связей см⁻¹. 720 Олиго-1,3-дигидроксипри фенилены, благодаря жесткому макромолекулярному каркасу, образуют очень хрупкие покрытия на металлах и стекле. Однако после введения в состав 1,3-ОДГФ пластифицирующих глицидиловых фрагментов они способность образовывать приобретают блестящие и гладкие покрытия на металлах и стекле. Покрытия, полученные из полиэпоксидов 1,3-ОДГФ характеризуются достаточно хорошими физико-механическими показателями(табл.3).

Табл. 3. Некоторые физико-механические показатели покрытий на основе полиэпоксидов 1,3- ОДГФ, содержание эпоксидных групп, %: 11.2 (1), 12.6 (2) и 14.5 (3)

No	Твердость по МЭ-3	Адгезия, %	Гибкость по ШГ, мм	Адгезионная прочность, кгс/см ²
1	0.83	86	3	42
2	0.80	91	1	47
3	0.78	94	1	50

Видно, что глицидиловые эфиры 1,3-ОДГФ имеют высокую относительную твердость (до 0.83) и адгезию (86÷94%). По клеющей способности они

находятся на уровне фенолформальдегидных смол. Прочность на разрыв шва, склеенного этими эфирами, достигает $42 \div 50$ кгс/см².

ростом содержания глицидиловых заместителей в составе 1,3-ОДГФ адгезионные свойства И гибкость но несколько покрытий улучшаются, снижается твердость образцов. Прежде приступить К определению эксплуатационных характеристик полиэпоксидов 1,3-ОДГФ, мы исследовали их способность к струк-турированию в присутствии различных отвердителей. Результаты этих иссле-дований приведены в табл. 4.

Из табл. 4. видно, что поли-1,3-ОДГФ эпоксиды способны структурироваться ангидридами органических кислот и аминами. Степень отверждения полиэпоксидов 1,3-ОДГФ достигает высока И 98%. Как следовало ожидать, максимальная степень отверждения полиэпоксидов 1,3-ОДГФ достигается при различных количествах отвердителя, также a количества зависит эпоксидных групп полиэпоксида. В данном конкретном случае оптимальное количество пфенилендиамина, малеинового и фталевого ангидридов равняется 15, 7.5 и 10÷15%, соответственно. Композиции, полученные при таких соотношениях компонентов, после отверждения приобретают твердость высокую теплостойкость. Максимальная теплопо Вика характерна для стойкость композиций на основе полиэпоксидов ОДГФ и малеинового ангидрида, а более высокую твердость проявляют композиции полиэпоксидов ОДГФ и фталевого ангидрида.

Полиэпоксиды 1,3-ОДГФ без ускорителей отверждаются не полностью. В качестве ускорителя этого процесса эффективны соединения основного характера (триэтиламин, триэтаноламин, диметилформамид и КОН), однако наилучшие результаты по отверждению фиксированы в присутствии КОН.

Табл. 4. Некоторые характеристики отвержденных полиэпоксидов 1,3-ОДГФ. (Режим отверждения: при 353 К - 3 ч, при 373 К - 2 ч, при 423 К - 1.5 ч и при 473 К - 0.5 ч. Ускоритель: КОН (1-4, 8-15) - 1.5%: ЛМФА (5-7), %: 1.0 (5), 1.5 (6), 2.0 (7)

	(5,0)					
	Отверд	Отвердители, % от массы			Теплостой-	Твердость
№	MA	ФА	п-ФДА	Степень отверждения, %	кость по Вика, К	по Бринеллю, кг/мм ²
1	5	_		90	483	16
2	7.5	_	_	98	493	22
3	10	_		87	478	20
4	15	_		82	453	18
5	_	5	_	86	423	17
6	_	5		90	433	17
7	_	5		87	413	20
8	_	5	_	93	448	19
9	_	10		98	458	23
10	_	15		98	463	24
11	_	20		95	433	20
12	_	_	5	93	428	15
13	_	_	10	95	413	18
14	_	_	15	97	403	16
15	_	_	20	86	393	14

ЛИТЕРАТУРА

1. Чеботарева Е.Г., Огрель Л.Ю. Современные тенденции модифика-

ции эпоксидных полимеров. // Фундаментальные исследования. М.:

- Академия естествознания. 2008. № 4. С.102–104.
- Сһеботарева Е.G., Одрел Л.Үи. Современніе тенденѕии модификаѕии епоксиднікh полимеров. // Фундаменталніе исследо- ваниуа. М.: Академиуа естествознаниуа. 2008. № 4. С. 102–104.
- 2. Еселев А.Д. Использование нанодобавок при получении эпоксидных композиций для покрытий полов // Лакокрасочная промышленность. М. 2009. т.№ 10. С.18-20, 22-24. Еселев А.Д. Исползование нанодобавок при полусћении епоксиднікh композизий длуа покрытий полов.// Лакокрасосћпауа промізѣленност. М. 2009. № 10. С.18-20, 22-24.
- 3. Батог А.Е., Савенко Т.В., Петько И.П. Алифатические, ациклические эпоксиды: синтез и свойства полимерных и композиционных материалов на их основе. Производство и переработка пластмасс. М.: НИИТЭХИМ. 1991. 53 с. Батод А.Е., Савенко Т.В., Петко И.П. Алифатиснеские, аtsиклиснеские

епоксиді: синтез и свойства полимернікh и композиѕи- оннікh материалов на икh основе.

Производство и переработка пластмасс. М.: НИИТЕХИМ. 1991. 53 с.

4. Бобылев В.А. Специальные эпоксидные смолы для клеев и герметиков. // Клеи, герметики, технологии. 2005. №5. С.8-11.

Бобілев В.А. Спеѕиалніе епоксидніе смолі длуа клеев и дерметиков. // Клеи, дерметики, текннолодии. 2005. №5. С.8-11. Еселев А.Д., 5. Бобылев В.А. Эпоксидные смолы: вчера, сегодня, завтра. // Лакокрасочная промышленность. 2009. №9. С. 12-16. Еселев А.Д., Бобілев В.А. Епоксидніе смолі: всһера, седоднуа, завтра. // Лакокрасосннауа проміѕһленност. 2009. №9. С. 12-16.

6.Бобылев В.А., Иванов А.В. Еселев А.Д. Эпоксидные пленкообразователи для полимерных покрытий полов.// Лакокрасочная промышленность. 2008. №3. С. 8-15.

Бобілев В.А., Иванов А.В. Еселев А.Д. Епоксидніе пленкообразователи длуа полимернікh покрітий полов.// Лакокрасосh- науа промізhленност. 2008. №3. С. 8-15.

7.Mamedov B.A., Aslanova E.T., Alekperov N.A. Investigation of Regularities and Products of Oxidative Polycondensation of 1,3-Benzenediol. //«Iranian Polimer Journal». 2005. №5. P.401-410.

OLİQO-1,3 –DİHİDROKSİFENİLENİN POLİEPOKSİDLƏRİNİN ALINMA QANUNAUYĞUNLUQLARININ VƏ XASSƏLƏRİNİN TƏDQİQİ

E.T.Aslanova, B. Ə.Məmmədov

Oliqo-1,3-dihidroksifenilenin (ODHF) poliepoksidlərinin sintezinin qanunauyğunluqları və xassələri tədqiq edilmişdir. ODHF-nin epixlorhidrinlə qarşılıqlı təsirindən alınan məhsulların dehidroxlorlaşdırılmasından ODHF-nin poliepoksidləri alınmışdır. Onlar yapışqanlıq qabiliyyətinə görə fenolformaldehid qatranları ilə eyni səviyyədədir, həm metal, həm də şüşə lövhələr üzərində kifayət qədər yaxşı fiziki-mexaniki göstəricilərlə xarakterizə olunan yüksək keyfiyyətli örtüklər əmələ gətirirlər.

Açar sözlər: oliqodihidroksifenilen, propilxlorhidrin efirləri, poliepoksidlər.

RESEARCH INTO REGULARITIES OF OBTAINING AND PROPERTIES OF POLYEPOXIDES OF OLIGO-1,3-DIHYDROXYPHENYLENE

E.T.Aslanova, B.A.Mamedov

Regularities of synthesis and properties of polyepoxides of oligo-1,3-dihydrooxyphenylene (ODHP) have been examined. Polyepoxides of ODHP have been obtained by means of dehydrochlorination of interaction products of ODHP with epichlorohydrin. By their adhesive capacity they are at a level of phenol formaldehyde resins to form highly qualitative coatings on metals and glass with sufficiently effective physical-mechanical indices.

Keywords: oligodihydroxyphenylene, propyl chlorohydrin ethers, polyepoxides.

Поступила в редакцию 24.02.2014.

204