ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ СОЕДИНЕНИЙ Ag₂S (Se, Te)

К.Н.Бабанлы, Ю.М.Шыхыев, М.Б.Бабанлы, И.И.Алиев

Институт химических проблем Национальной АН Азербайджана, Бакинский государственный университет

Описана модифицированная установка количественного ДТА для определения термодинамических функций фазовых превращений веществ, с помощью которой определены теплоты и энтропии полиморфных переходов и плавления соединений Ag_2X (S, Se, Te). Проведен сравнительный анализ полученных результатов с литературными данными.

Термодинамические функции фазовых превращений являются фундаментальными характеристиками веществ. Их значения связаны с глубиной изменения структуры ближнего порядка и характера химической связи при переходе вещества из одного структурного (агрегатного) состояния в другое [1,2]. В частности, значения теплоты и энтропии плавления химических соединений непосредственно связаны со степенью разупорядочения в ближнем порядке. Эти функции используются в различных термодинамических расчетах, в частности, входят в уравнения термодинамического анализа фазовых диаграмм как параметры стабильности.

Термодинамические функции плавления и полиморфных переходов халькогенидов серебра, определенные в различных работах и представленные в современных справочниках [3,4], весьма противоречивы (табл.). Например, значения теплот плавления Ag₂S, определенные [5] методом КДТА, примерно в 4 раза (!) выше данных [3] и почти в 2 раза выше данных [4]. Завышенность данных [5] очевидна. Учитывая это, а также то, что теплоты плавления Ag₂Se и Ag₂Te определены только в одной работе [5], мы повторно изучили термодинамические функции плавления и полиморфных переходов соединений всех Ag_2X .

ЭКСПЕРИМЕНТЫ И ИХ РЕЗУЛЬТАТЫ

Для определения теплот фазовых превращений (ΔH_{100}) веществ наиболее широко

применяются методы калориметрии и КДТА. Несмотря на трудоемкость эксперимента, калориметрия является наиболее точным методом определения термохимических величин. Отличительной особенностью КДТА является экспрессность этого метода при неплохой воспроизводимости результатов [6,7].

Применение метода КДТА для определения ΔH_{np} веществ основано на прямопропорциональной зависимости площади пика (S) на кривой дифференциальной записи и значением теплового эффекта процесса плавления [6,7]:

$$Q_{np} = K \cdot S \tag{1},$$

где К-коэффициент пропорциональности, зависящий как от характеристик пирометрической установки, так и от свойств исследуемого вещества.

Изучению различных вопросов методики КДТА посвящены многочисленные работы, результаты которых обобщены в монографиях [6-8]. Анализ этих работ показывает, что основная трудность при определении $\Delta H_{\rm пр}$ методом количественной термографии заключается в практической невозможности учета всех факторов, влияющих на значение К в уравнении (1).

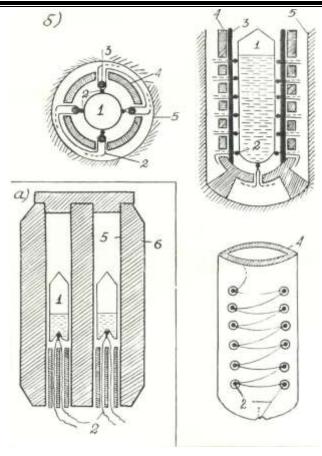
Поэтому для определения тепловых эффектов чаще используют эталонные вещества. Различные варианты методики КДТА описаны в [6]. В простейшем случае для сопоставления двух пиков на одной термограмме справедливо:

$$S_1/S_2 = Q_1/Q_2$$
 (2)

(Этот вариант КДТА называется методом "совместного эталона" и применяется в количественном анализе минералов [6]). Для определения теплот плавления широко применяется также вариант "раздельного эталона" метода КДТА [6,7]. Согласно этому методу для сопоставления площадей пиков (S₁ и S₂) на термограммах двух различных веществ (например, эталона и образца) по выражению (2) нужно привести их к значениям, отвечающим одинаковому отклонению кривой дифференциальной записи от нулевого положения при отсутствии теплового эффекта.

Для определения теплот фазовых превращений соединений Ag_2X нами использована модифицированная установка КДТА, созданная в [9] (рис.), которая по своим характеристикам приближается к методу ДСК. Для повышения точности определения теплот фазовых превращений веществ методом КДТА нами модифицированы держатель образца и термопары пирометрической установки (рис).

Суть внесенных изменений состоит в том, что вместо одного горячего спая температура образца измеряется по всей поверхности ампулы с помощью батареи термопар, присоединенных друг с дру-Причем все спаи гом последовательно. в специальные отверстия введены держателе образца, приготовленные из тепло- и электроизолирующего материала и прижимаются к стенке ампулы. Материал батареи термопары одновременно слутеплообмена между амжит средством пулой и печным пространством. Батарея ячейки с образцом дифференциально соединена с простой термопарой, значенной для измерения температуры индифферентного вещества. Такая конструкция позволяет максимально точность КДТА к калориметриблизить ческим измерениям, в частности, она почти аналогична микрокалориметру


Тиана, работающему в режиме нагрева с постоянной скоростью [7,8], так как измерение изменения разности температуры по всей поверхности образца с темпепечного пространства по сущературой ству равносильно регистрации теплового потока от сосуда к окружающей среде или обратно. Значение площади пика на кривой ДТА также, как и в обычным варианте КДТА, связано с теплотой превращения выражением типа (1). Однако в данном случае значение К не зависит от характеристик исследуемых веществ и температуры, т.е является постоянной прибора. Погрешность определения этим методом не превышает 5%.

Для каждого соединения приготовили по два образца массой 2г и для каждого образца снимали по 3 термограммы. Измерением площадей пиков находили среднее значение площади (S_{cp}), по которой производили расчет ΔH_{np} . Результаты приведены в таблице.

Из таблицы следует, что значения температур плавления и полиморфных превращений соединений Ag_2X , определенные нами, практически совпадают с литературными данными.

Значения теплоты и энтропии $\alpha \rightarrow \beta$ полиморфного перехода соединения Ag_2S хорошо согласуются с данными [3,4], а Ag_2Se-c данными [4, 10]. Для указанного фазового превращения соединения Ag_2Te полученные нами значения совпадают с данными [4,11] и почти на 50% отличаются от результатов, приведенных в [12].

Наши данные по теплоте и энтропии плавления Ag_2S неплохо согласуются с величинами, приведенными в [4]. Теплоты и энтропии плавления Ag_2Se и Ag_2Te , приведенные в работе [5] значительно выше наших данных. По-видимому, значения этих функций, оцененные методом КДТА [5], сильно завышены.

Схемы элементов нагревательной части установок КДТА (а) и КДТА (М) (б). 1- ампула, 2- термопары, 3-фарфоровые стержни для крепления спаев термопар к ячейке, 4- ячейка-держатель, 5- внутренняя стенка блока, 6-блок.

Термодинамические функции фазовых превращений халькогенидов серебра

	Фазовый	Τ _{пр} ,	ΔH_{np} ,	$\Delta S_{\pi p}$,	
Соединение	переход	К	кДж/моль	Дж/(моль·К)	Источник
	$\alpha \rightarrow \beta$	449	3.9	8.7	[3,4]
		450	3.6±0.3	8.0±0.5	Наст.раб.
Ag_2S	$\beta \rightarrow \gamma$	859	0.5	0.6	[4]
	γ→ж	1103	7.9	7.16	[4]
			3.8	3.45	[3]
			14.0	12.7	[5]
		1110	8.1±0.5	7.3±0.5	Наст.раб.
	$\alpha \rightarrow \beta$	406	7.1	17.5	[4]
			6.824±0.002	16.8±0.01	[10]
Ag ₂ Se			6.8±0.6	16.7±1.1	Наст.раб.
	β→ж	1170	17.6	15.0	[5]
		1170	10.6±1.2	9.1±1.1	Наст.раб.
Ag_2Te	$\alpha \rightarrow \beta$	418	6.6	15.8	[4,11]
			12,1	28.9	[12]
		420	6.4 ± 0.4	15.3	Наст.раб.
	$\beta \rightarrow \gamma$	963	0.7	0.73	[3]
	γ→ж	1233	21.3	17.3	[5]
		1233	13.4±0.8	10.9±0.7	Наст.раб.

ЛИТЕРАТУРА

- 1. Свелин Р.А. Термодинамика твердого состояния. М.: Металлургия. 1968. 316 с.
- 2. Глазов В.М., Айвазов А.А. Энтропии плавления металлов и полупроводников. М.: Металлургия.1980. 172 с.
- 3. База данных термических констант веществ. Электронная версия под. ред. В.С. Юнгманна. 2006 г., http://www.chem.msu.su/cgi-bin/tkv
- 4. Kubaschewski O., Alcock C.B., Spenser P. / J. Materials Thermochemistry. Pergamon Press. 1993. 350 p.
- 5. Глазов В.М., Менделевич А.Ю. Оценка теплот и энтропий плавления халькогенидов серебра и меди. / Электронная техника. Сер.14. Материалы. 1968. №1. С.114.
- 6. Берг Л.Г. Введение в термографию. М.: Наука. 1969. С. 396.

- 7. Уэндланд У. Термические методы анализа. М.: Мир. 1978. С. 145.
- 8. Рао Ч.Н.Р., Гопалакришнан Дж. Новые направления в химии твердого тела. Пер. с англ. под ред. акад. А.Ф.Кузнецова. Новосибирск: Наука. Сиб.отд. 1990. 520 с.
- 9. Бабанлы М.Б. Дисс... док.хим.наук. М.: МГУ. 1987. 400с.
- 10. Gronudd F., Stolen S., Semenov Y. // Thermochim. Acta. 2003. v.399. №1-2. C. 213.
- 11. Mills K. Termodinamik data for inorganic sulphids, selenides and tellurides. London. 1974. 652 p.
- 12. Физико-химические свойства полупроводниковых веществ. Справочник. под. ред. А.В.Новоселовой и В.Б.Лазарева. М.: Наука. 1976. 339 с.

Ag₂S (Se, Te) BİRLƏŞMƏLƏRİN FAZA ÇEVRİLMƏLƏRİNİN TERMODİNAMİK FUNKSİYALARI K.N.Babanlı, Yu.M.Şıxıyev, M.B.Babanlı, İ.İ.Aliyev

Miqdari DTA üsulu ilə maddələrin faza çevrilmələrinin istiliyini təyin etmək üçün modifikasiya олунмуш qurğu təsvir edilmiş və həmin qurğuda Ag_2X (S, Se, Te) birləşmələrinin polimorf çevrilmə və ərimə termodinamik funksiyaları təyin edilmişdir. Alınan nəticələr ədəbiyyat məlumatları ilə müqayisəli təhlil edilмишдир.

THERMODYNAMIC FUNCTIONS OF PHASE TRANSFORMATIONS OF Ag₂S (Se, Te) COMPOUNDS

K.N.Babanly, J.M.Shikhiyev, M.B.Babanly, I.I.Aliev

A modified device of quantitative DTA for determination of thermodynamic functions of phase transformations has been described. Using the device, we identified heats and entropy of polymorphic transitions and melting of Ag_2X (S, Se, Te) compounds. A comparative analysis of the results obtained with literary data has been carried out.