УДК 546.87.273:621.315.6.3.011.5

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ СТЕКОЛ СИСТЕМЫ $2Bi_2O_3 \cdot 3SiO_2 - Bi_2O_3 \cdot B_2O_3$

С.И.Бананярлы, Р.Н.Касумова, Ш.С.Исмаилов

Институт химических проблем им. М.Ф.Нагиева Национальной АН Азербайджана AZ 1143 Баку, пр.Г.Джавида, 29; e-mail: itpcht@lan.ab.az

Изучена температурная зависимость диэлектрической проницаемости сплавов системы $2Bi_2O_3\cdot 3SiO_2$ - $Bi_2O_3\cdot B_2O_3$ (0-60 мол.% $Bi_2O_3\cdot B_2O_3$). В сплавах, содержащих 15 и 20 мол.% $Bi_2O_3\cdot B_2O_3$, по сравнению с образцами составов 6 и 10 мол.% $Bi_2O_3\cdot B_2O_3$, в интервале температур $300\div 540$ К наблюдается аномальный рост диэлектрической проницаемости. Эта аномалия, вероятно, объясняется тем, что при увеличении концентрации ионов BO_3^{3-1} электронная поляризация ослабевает и соответственно осуществляется дипольнорелаксационное упорядочение.

Ключевые слова: система, бораты, висмутокремниевые оксидные стекла, диэлектрическая проницаемость.

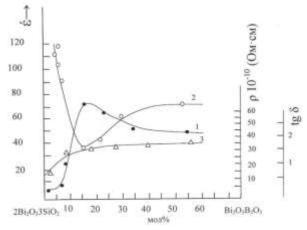
Висмутокремниевые оксидные сплавы широко применяются для изготовления самых различных приборов и микросхем в технике и электронике

[1-8]. Висмутсодержащие оксидные сплавы обладают сегнетоэлектрическими свойстваиспользуются как светочувствительные элементы датчики И механических напряжений [4, 5]. Оксид и нитрид кремния и некоторые стекла на их основе являются наиболее перспективными материалами для изоляционных и герметизирующих покрытий. Не менее важным аспектом применения оксидов является использование их в качестве изолирующих подложек. Подложки должны обладать

высокой теплопроводностью и значительной механической прочностью, большим электросопротивлением и малой диэлектрической проницаемостью, стойкостью к физическим и химическим воздействиям и инертностью к осаждаемым веществам во всем интервале температур технологии изготовления.

С этой точки зрения представляет интерес тройная система Bi_2O_3 - B_2O_3 - SiO_2 . Цель настоящей работы и состояла в получении и исследовании температурной зависимости диэлектрической проницаемости сплавов системы $2Bi_2O_3 \cdot 3SiO_2$ - $Bi_2O_3 \cdot B_2O_3$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


В настоящей работе синтезировали образцы системы $2Bi_2O_3 \cdot 3SiO_2 - Bi_2O_3 \cdot B_2O_3$, содержащей 0-60 мол.% $Bi_2O_3 \cdot B_2O_3$, из оксидов Bi_2O_3 (х.ч.), SiO_2 аморфного (о.с.ч.) и H_3BO_3 (ч.д.а.). Исходные смеси нагревали до 1273-1373 K, выдерживали при этой температуре 1 ч., затем расплавы выливали на титановую подложку при комнатной температуре. Все образцы были стеклообразными от светло-коричневого до

кирпично-коричневого цвета. Стекла отжигали при 773 К в течение 150 ч.

Изучение диэлектрической проницаемости є проводили в широком интервале температур 300÷700 К на образцах в форме параллелепипеда размерами (2 – 4 х 8 х 4). Измеряли диэлектрическую проницаемость с помощью прибора марки ВМ-560. Погрешность измерений не превышала 6.2 %.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

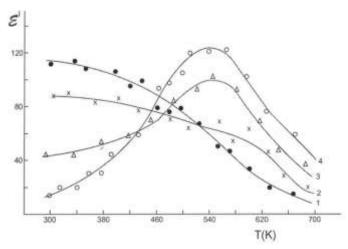

Ранее нами была изучена концентрационная зависимость удельного электросопротивления диэлектрической ρ, проницаемости є и диэлектрической потери tgδ при комнатной температуре стекол системы $2Bi_2O_3 \cdot 3SiO_2$ - $Bi_2O_3 \cdot B_2O_3$ [8]. изменения параметров Характер зависимости от концентрации $Bi_2O_3 \cdot B_2O_3$ сложный (рис. 1). При малых концентрациях $Bi_2O_3 \cdot B_2O_3$ значение электросопротивления полученных сплавов (р=8- 10^{10} ом·см) по сравнению с исходным $(\rho \approx 12^{10} \text{om} \cdot \text{cm})$ компонентом Начиная $c \times > 6$ мол.% $Bi_2O_3 \cdot B_2O_3$, значение удельного электросопротивления резко возрастает до 70·10¹⁰ом·см (кривая 1). Диэлектрическая проницаемость є в интервале концентраций 0 - 15мол.% $Bi_2O_3 \cdot B_2O_3$ резко уменьшается от 115 до 45 и, проходя через минимум, с ростом концентрации Ві₂О₃·В₂О₃ возрастает до 66 (кривая 2). Значение диэлектрической потери $tg\delta$ изменяется от 0.6 до 2.2 (кривая 3). По видимому, в формировании свойств исследованных стекол большую играют электронно-ионные взаимодействия [3,4].При концентрациях малых $Bi_2O_3 \cdot B_2O_3$ ионы BO_{3}^{3} , стеклах вероятно, распределены статистически хаотично, И проводимость отдельных ионов и механизм центров переноса инжектированных зарядов зависит от их степени поляризации.

Рис.1. Концентрационные зависимости удельного электросопротивления – ρ (1), диэлектрической проницаемости – ϵ (2) и диэлектрической потери – $tg\delta$ (3) стекол $2Bi_2O_3\cdot 3SiO_2$ - $Bi_2O_3\cdot B_2O_3$

Характерные особенности стекол проявляются при исследовании температурной зависимости диэлектрической работе проницаемости. настоящей результаты измерения представлены диэлектрической проницаемости четырех образцов: 6, 10, 15 и 20 мол. « Bi₂O₃·B₂O₃ в интервале температур 300÷700 К (рис. 2). В содержащих 6 и стеклах, 10 мол.% интервале $Bi_2O_3 \cdot B_2O_3$, температур 300÷420 K, значение диэлектрической проницаемости έ почти постоянно и с температуры повышением уменьшается (кривые 1-2). В образцах 15, 20 мол.% $Bi_2O_3 \cdot B_2O_3$, наоборот, ростом

диэлектрическая температуры проницаемость έ растет, достигая максимума при К. При дальнейшем увеличении температуры до 700 К значение έ уменьшается. Такое изменение диэлектрической проницаемости с температурой, вероятно, объясняется что c увеличением тем, концентрации ионов BO₃3система в упорядоченное поляризопереходит ванное состояние. Согласно теории [1, 7], в электронно поляризованной системе значение диэлектрической проницаемости с повышением температуры уменьшается за счет разрушения электронной поляризации.

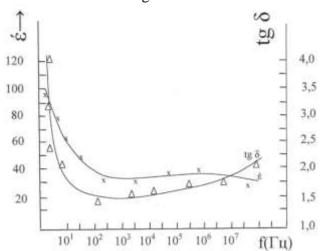


Рис.2.Температурная зависимость диэлектрической проницаемости стекол, содержащих: 6 (1), 10 (2), 15 (3), и 20 (4) мол.% $Bi_2O_3 \cdot B_2O_3$.

Однако в образцах 15 и 20 мол.% $Bi_2O_3 \cdot B_2O_3$ значение диэлектрической проницаемости с повышением температуры до 540 К увеличивается, что, по-видимому, связано с усилением дипольно-релаксационной поляризации. Вероятно, в исследованных стеклах системы $2Bi_2O_3 \cdot 3SiO_2$ - $Bi_2O_3 \cdot B_2O_3$ при увеличении концентрации ионов BO_3^{3-} электронная поляризация ослабевает и, соответственно, осуществляется дипольно-релаксационное поляризованное упорядочение.

Результаты исследований частотных зависимостей диэлектрической проницаемости ϵ и диэлектрической потери $tg\delta$ образца состава 5 мол.% $Bi_2O_3 \cdot B_2O_3$ хорошо согласуются с этими выводами (рис. 3) [8]. Частотные зависимости ϵ и $tg\delta$

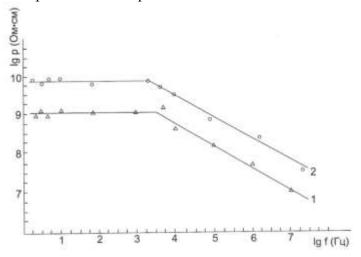

этого стекла имеют три характерных участка: первый – участок снижения є́ и tgδ с ростом частоты в области низких f (до 10² Гц), средний где изменений наблюдается (10^2 - 10^6 Гц) и третий – где ε **у**меньшается. увеличивается. tgδ a Очевидно, что участкам 1 и 2 частотных зависимостей έ и tgδ соответствуют различные механизмы поляризации ионов ВО₃³⁻. Это связано с тем, что с повышением частоты начинают последовательно исчезать миграционная, ионная и электронная поляризации и усиливается дипольно-релаксационная упорядоченность.

Рис. 3. Частотные зависимости диэлектрической проницаемости ($\acute{\epsilon}$) и диэлектрической потери ($tg\delta$) образца состава ($2Bi_2O_3 \cdot 3SiO_2$)95 - ($Bi_2O_3 \cdot B_2O_3$)5.

Исследования частотной зависимости удельного электросопротивления образцов

5 и 10 мол.% $Bi_2O_3 \cdot B_2O_3$ также согласуются с этими выводами (рис. 4).

Рис. 4. Частотные зависимости удельного электросопротивления (р) стекол составов: $(2Bi_2O_3 \cdot 3SiO_2)_{95}$ - $(Bi_2O_3 \cdot B_2O_3)_5$ (1) и $(2Bi_2O_3 \cdot 3SiO_2)_{90}$ - $(Bi_2O_3 \cdot B_2O_3)_{10}$ (2).

В логарифмическом масштабе эта зависимость имеет вид ломаной линии, состоящей из двух прямолинейных участков с различными наклонами. Участки с различными наклонами соответствуют различным показателям зависимости электросопротивления р от частоты.

Таким образом, комплексный анализ

электрических (ρ) и диэлектрических (ϵ и tg δ) свойств показывает, что исследованные стекла системы $2Bi_2O_3 \cdot 3SiO_2 - Bi_2O_3 \cdot B_2O_3$ не являются механической смесью компонентов. В образцах с увеличением концентрации ионов BO_3^{3-} электронная поляризация ослабевает и усиливается дипольнорелаксационная упорядоченность.

ЛИТЕРАТУРА

- 1. Посынков В.В., Сорокин В.С. Материалы электронной техники. М.: Высшая школа. 1986. С.367.
- 2. Мотт Н., Девис Э. Электронные процессы в некристаллических веществах. М.: Мир. 1982. т.2. С.664.
- 3. Карфут Д. Введение в физику сегнетоэлектрических явлений. М.:Мир. 1970. С.352.
- 4. Шибаев А.Т., Власенко В.Г., Дранников Д.С., Зарубин И.А. Структура и диэлектрические свойства $Bi_4Pb_{1.5}$ · $Ti_{4.5}O_{16.5}$ и $Bi_5Ca_{0.5}$ · $CaTi_{3.5}O_{16.5}$. // Неорганические материалы. 2005. т.41. №10. С.1231-1235.
- 5. Pardo L., Castro A., Millian P. et al. (Bi₃TiMbO₉)_x(SrBi₂Nb₂O₉)_{1-x}.

- Auzivillius Tupe Structure Piezoelectric Ceramics Obtaind from Mechanochemically Activated Oxides. // Acta. Mater. 2000. v.48. P.2421-2428.
- 6. Роусон Г. Неорганические стеклообразующие системы. Изд. Мир. 1974. С.312.
- 7. Орешкин П.Р. Физика полупроводников и диэлектриков. М.:Высшая школа. 1977. С.448.
- 8. Бананярлы С.И., Исмаилов Ш.С., Касумова Р.Н. Электросопротивление и диэлектрические характеристики стекол системы $2Bi_2O_3 \cdot 3SiO_2 Bi_2O_3 \cdot B_2O_3$ (0 − 50 мол.% $Bi_2O_3 \cdot B_2O_3$). // Kimya problemləri. 2008. №2. С.363-365.

2Bi₂O₃·3SiO₂ - Bi₂O₃·B₂O₃ SİSTEMİNİN ŞÜŞƏLƏRİNİN DİELEKTRİK NÜFUZLUĞUNUN TEMPERATUR ASILILIĞI

S.İ.Bananyarlı, R.N.Qasımova, Ş.S.İsmayılov

 $2Bi_2O_3 \cdot 3SiO_2 - Bi_2O_3 \cdot Bi_2O_3$ sisteminin şüşələrinin dielektrik nüfuzluğunun temperatur asılılığı $300 \div 540$ K-də öyrənilmişdir. Bu temperatur intervalında 15 və 20 mol.% $Bi_2O_3 \cdot B_2O_3$ tərkibli nümunələrdə dielektrik nüfuzluğun anomal artması müşahidə olunmuşdur. Anomal dəyişmə BO_3^{3-} ionlarının konsentrasiyasının artması ilə elektron polyarizasiyasının zəyiflənməsi və uyğun olaraq dipol-relaksasiyası müddətinin artması hesabına baş verdiyi ehtimal olunur. **Acar sözlər:** sistem, boratlar, bismutsilisium, oksid süsələr, dielektrik nufuzluğu.

TEMPERATURE DEPENDENCE OF DIELECTRIC PERMITTIVITY OF GLASSES OF 2Bi₂O₃·3SiO₂-Bi₂O₃·B₂O₃ SYSTEM

S.I.Bananyarli, R.N.Gasimova, Sh.S.Ismayilov

Temperature dependence of dielectric permittivity of alloys of $2Bi_2O_3 \cdot 3SiO_2 - Bi_2O_3 \cdot B_2O_3$ (0-60 mol.% $Bi_2O_3 \cdot B_2O_3$) system has been studied. In the alloys with 15 and 20 mol.% $Bi_2O_3 \cdot B_2O_3$, as compared to the samples of compounds 6 and 10 mol.% $Bi_2O_3 \cdot B_2O_3$, an anomalous increase of dielectric permittivity has been revealed at $300 \div 540$ K temperature range.

This anomaly is, perhaps, explained as being due to the fact that the rise in the concentration of ions BO_3^{3-} , the electronic polarization weakens and correspondingly a dipole-relaxation ordering occurs.

Keywords: system, borates, bismuth-siliceous oxide glasses, dielectric permittivity.

Поступила в редакцию 16.04.2013.