УДК 662.67:66.092.147.3:541:127

СОСТАВ СМОЛЫ И ГАЗА ПИРОЛИЗА ДЖАНГИЧАЙСКОГО ГОРЮЧЕГО СЛАНЦА

С.М.Гасанова, А.А.Юсиф-заде, К.Ю.Аджамов

Азербайджанская государственная нефтяная академия AZ -10 Баку, пр. Азадлыг, 20; e-mail: ihm@adna.baku.az

Исследовано влияние скорости нагрева на состав смолы и газа пиролиза Джангичайского сланца. Установлено, что с увеличением скорости нагрева сланца повышается выход ароматических углеводородов и почти не изменяется выход алифатических углеводородов. Изменением скорости нагрева можно регулировать соотношение алкан/алкен в газе.

Ключевые слова: пиролиз сланца, смола пиролиза

В Азербайджане известно до 30 месторождений горючих сланцев. Ранее нами были представлены результаты исследований пиролиза Джангичайского сланца [1]. В данной статье даны результаты исследований по изучению состава смолы и газа, полученных в пиро-

лизе, в зависимости от скорости нагрева сланца. Пиролиз проводился в токе азота, подаваемого со скоростью 80 мл/мин. При этом менялась скорость нагрева сланца. В зависимости от скорости нагрева сланца менялся элементный состав смолы пиролиза, что видно из данных таблицы 1.

Табл. 1.Зависимость элементного состава смолы пиролиза, образованной в процессе пиролиза в среде азота от скорости нагрева сланца

Элемент,	Скорость нагрева, ⁰ С/мин.								
%	2	5	10	15	20	30	50		
углерод	75.1	76.5	77.9	79.2	80.1	80.9	81.4		
водород	8.65	8.73	8.81	8.83	8.86	8.9	8.98		
азот	0.61	0.64	0.67	0.69	0.71	0.72	0.72		
кислород	6.91	4.29	3.12	2.04	1.54	1.01	0.3		
cepa	7.86	8.21	8.24	8.3	8.41	8.45	8.49		

Как видно из данных таблицы 1, при увеличении скорости нагрева от 2^{0} С до 50^{0} С в мин. количество углерода увеличивается от 75.1 до 81.4%, водорода - от 8.65 до 8.98%, азота - от 0.61 до 0.72%, серы - от 7.86 до 8.49%. Увеличение количества азота и уменьшение соотношения водорода и углерода в то же время увеличивает содержание ароматических углеводородов в смоле пиролиза. Из литературных данных [2] известно, что азот, входящий в состав

смолы, влияет на термодинамическую стойкость и входит в состав ароматических углеводородов, устойчивых к крекингу.

Увеличение скорости нагрева мало влияет на выход алифатических углеводородов, которые отличаются относительной стабильностью своего количества. Увеличение скорости нагрева увеличивает выход бензольной фракции. В таблице 2 показан фракционный состав смолы пиролиза, образованной в азотной среде.

Табл. 2. Фракционный состав смолы пиролиза, образованной в среде азота

Растворитель	Фракция	Скорость нагрева, ⁰ С/мин.						
		2	5	10	15	20	30	50
пентан-1	алифатические	7.1	7.1	7.2	6.7	6.9	7.1	7.2
	углеводороды							

пентан-2	полиароматические	7.1	7.2	7.1	7.3	7.3	7.1	7.0
	углеводороды							
бензол	моноароматические	35.0	35.5	35.5	36.8	37	38	39
	углеводороды							
этилацетат	сложные эфиры	32	33	34	35	35	36	36
	полярные соединения	3.4	3.9	4.1	4.2	4.3	4.5	4.5
метанол								
	асфальтены	15.4	13.3	12.1	10	9.5	7.3	6.3

Как видно из таблицы 2, в смоле пиролиза выход ароматических углеводородов повышается от 35 до 39%. Количество фракции этилацетата увеличивается от 32 до 36%, выход метанольной фракции - от 3.4 до 4.5%.

Выход смолы пиролиза зависит от условий процесса. Уменьшение выхода смолы пиролиза может происходить в результате протекания, с одной стороны, процесса коксования соединений, обед-

ненных водородом и, с другой стороны, протекания процесса крекинга тических углеводородов, что увеличивает образование газообразных продуктов. При высокой скорости нагрева уменьшается коксование полиароматических углеводородов, что приводит к увеличению выхода смолы пиролиза. Состав газа, выходящего при пиролизе сланца В токе азота представлен в таблице 3.

Табл. 3.Зависимость выхода газа, полученного в среде азота от скорости повышения температуры

Газы, масс. %	Скорость нагрева, ⁰ С/мин.						
	2	5	10	15	20	30	50
алканы	1.75	1.78	1.79	1.84	2.06	2.54	3.02
олефины	1.7	1.72	1.73	1.79	1.95	2.1	2.72
Σ у/в-ные газы	3.45	3.5	3.52	3.63	4.01	4.64	5.74
водород	0.05	0.08	0.09	0.1	0.1	0.1	0.1
угарный газ	0.35	0.35	0.4	0.4	0.3	0.3	0.25
CO_2	2.5	2.58	2.9	3.4	3.95	4.61	4.72
Σ неорганические газы	2.9	3.05	3.39	3.9	4.35	5.01	5.07

Как видно их данных таблицы 3, с повышением скорости нагрева от 2 до 50^{0} С/мин. выход алканов увеличивается с 1.75 до 3.02% (масс), олефинов — с 1.70 до 2.72% масс и углеводородных газов - с 3.45 до 5.74% масс. Количество СО уменьшается от 0.35 до 0.25% масс, а водорода - увеличивается от 0.05 до 0.1% масс. Количество неорганических газов увеличивается примерно в 1.8 раза.

Данные, приведенные в таблице 3, показывают, что с увеличением скорости нагрева количество алифатических газов

увеличивается, что приводит к уменьшению выхода смолы, очевидно, вследствие ее разложения.

Как видно из данных таблицы 3, соотношение алкан/алкен в газе можно регулировать изменением скорости нагрева, и эта величина зависит от скорости разрыва С-С связи и скорости реакции дегидрирования.

При пиролизе получается около 5% масс. водяного пара, который способствует образованию неорганических газов по следующим реакциям:

$$C + H_2O \rightarrow H_2 + CO$$

 $CO + H_2O \longrightarrow CO_2 + H_2$
 $2[CH] + H_2O \rightarrow CO_2 + CH_4$

C увеличением скорости нагрева увеличиваются реакции образования CO_2 и водорода.

ЛИТЕРАТУРА

1. Х.М.Керимов, С.М.Гасанова, Д.Г.Мамедова. «Пиролиз и определение кинетических параметров разложения горючих сланцев», «N., Q "Geotexnoloji

problem və kimya E.-T.İ». Elmi əsərlər. VII cild. Bakı. 2006. S. 326-331.

2. Burnham A.K. // American Chemical Sociyety Symposium Series. 1981. V.163. P.39.

CƏNGİÇAY YANAR ŞİSTİNİN PİROLİZ QƏTRANININ VƏ QAZININ TƏRKİBİ

S.M. Həsənova, A.A. Yusifzadə, K.Y. Əcəmov

Məqalədə Cəngiçay yanar şistinin pirolizi nəticəsində alınan qətran və qazın fiziki-kimyəvi analizi və qızdırılma sürətinin dəyişməsinin onların tərkibinə təsiri verilib. **Açar sözlər:** şistin pirolizi, piroliz qətranı

COMPOUND OF RESIN AND GAS OF PYROLYSIS OF JANGHICHAY COMBUSTIBLE SHALE

S.M.Hasanova, A.A.Yusif-zadeh, K.Y.Ajamov

Influence of heating rates on compound of resin and gas of pyrolysis of Janghichay shale has been analysed. It has been established that as heating rates increase, so does a yield of aromatic hydrocarbons, while a yield of aliphatic hydrocarbons does not change practically. Changes in heating rates makes it possible to regulate alkan/alken relation in gas.

Key words: pyrolysis of shale, resin of pyrolysis