# ВЗАИМОСВЯЗЬ ХИМИЧЕСКИХ СДВИГОВ В СПЕКТРАХ ЯМР <sup>13</sup>С ФУНКЦИОНАЛЬНОЗАМЕЩЕННЫХ ЦИКЛОПРОПИЛСТИРОЛОВ И НЕКОТОРЫХ ПАРАМЕТРОВ ИХ РЕАКЦИОННОЙ СПОСОБНОСТИ

### К.Г.Гулиев, Г.З.Пономарева, Ц.Д.Гулвердашвили, Ф.И.Гусейнова, Т.Н.Гусейнова, Р.М.Искендерова

Институт полимерных материалов Национальной АН Азербайджана, г. Сумгайыт, e-mail:ipoma@science.az

Установлена взаимосвязь между химическими сдвигами спектров ЯМР  $^{13}$ С ряда 2-функциональнозамещенных-1-(n-,o-винилфенил)циклопропанов и параметрами их активности в радикальной сополимеризации со стиролом. Найденная корреляционная зависимость между произведением констант сополимеризации стирола  $(r1 \cdot r2)$  с рядом функциональнозамещенных циклопропилстиролов и химическими сдвигами в спектрах ЯМР  $^{13}$ С дает возможность предсказания новых пар мономеров, склонных давать чередующиеся сополимеры со стиролом.

Ключевые слова: циклопропилстиролы, константа сополимеризации

Ранее в работах [1,2] была найдена корреляция между химическим сдвигом α-и β-углеродов в <sup>13</sup>С ЯМР-спектрах и электростатическим параметром в схеме Q-е для радикальной сополимеризации ряда алифатических винильных мономеров и производных стирола.

К настоящему времени известны корреляционные зависимости между химическими сдвигами в спектрах ЯМР  $^{1}$ Н и  $^{13}$ С олефинов и общей  $\pi$  -зарядной плотностью на соответствующих атомах [3].

В ранних наших исследованиях [4-6] нами изучены спектральные характеристики (ПМР, УФ и ИК-спектры) некоторых функциональнозамещенных циклопропилстиролов. При этом основное внимание уделено изучению влияния природы заместителей на полимеризационную активность мономеров.

Целью настоящей работы является установление возможности корреляции между некоторыми параметрами реакционной способности мономеров 2-функционально-замещенных 1-(п-,-о-винилфенил) циклопропанов в сополимеризации со стиролом и характерными значениями <sup>13</sup>С химических сдвигов спектров ЯМР.

При этом особое внимание заслуживает изучение влияния заместителей на химические сдвиги  $C_{\beta}$  винильной группы. Предпринята попытка найти количественные взаимосвязи между произведениями констант сополимеризации  $r_1.r_2$ , характеризующими структуру образующихся сополимеров, и химическими сдвигами ЯМР.

Для этой цели были выбраны мономеры, которые хорошо изучены в сополимеризации со стиролом и для которых имеются параметры реакционной способности - это функциональнозамещенные циклопропилстиролы [4-9].

$$X = -CO_2H$$
,  $-CO_2C_2H_5$ ,  $-CO_2CH_2-CH_2CH_2$ ,  $-CH_2OH$ ,  $-CH_2OCH_2-CH_2CH_2$ 
 $X = -CH_2OCH_3$ ,  $-CH_2OC_2H_5$ 

Взаимосвязь между параметрами реакционной способности и химическими сдвигами атомов винильных групп в спектрах ЯМР основывается на зависимости константы  ${\bf e}$  в схеме Алфрея-Прайса от  $\pi$  - электронного заряда на атомах C=C группы

[10]. В таблице представлены некоторые параметры реакционной способности функциональнозамещенных циклопропилстиролов, а также химические сдвиги спектров ЯМР этих мономеров.

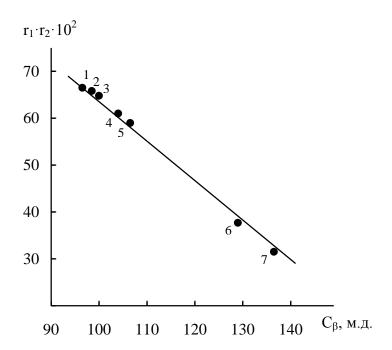
Химические сдвиги спектров ЯМР <sup>13</sup>С замещенных циклопропилстиролов и некоторые параметры их реакционной способности в радикальной сополимеризации со стиролом.

$$CH_2=CH$$
  $X$  (1-5);  $CH_2=CH$   $X$  (6,7)

| Мо<br>но-<br>мер   | № | Заместители<br>Х                                     | Хим. сдвиг $C_{\beta}$ в ЯМР $^{13}$ С в спектрах, м.д. | Параметры реакционной способности |       |                 |                   |       |        |
|--------------------|---|------------------------------------------------------|---------------------------------------------------------|-----------------------------------|-------|-----------------|-------------------|-------|--------|
|                    |   |                                                      |                                                         | $\mathbf{r}_1$                    | $r_2$ | $r_1 \cdot r_2$ | 1/ r <sub>1</sub> | $Q_1$ | $e_1$  |
| (2-замещенный) ЦПС | 1 | CH <sub>2</sub> OCH <sub>2</sub> -CH-CH <sub>2</sub> | 96.5                                                    | 1.15                              | 0.58  | 0.667           | 0.87              | 2.86  | -1.436 |
|                    | 2 | CH₂OH                                                | 98.0                                                    | 1.1                               | 0.6   | 0.660           | 0.91              | 1.826 | -1.215 |
|                    | 3 | CO <sub>2</sub> CH <sub>2</sub> -CH-CH <sub>2</sub>  | 99.5                                                    | 1.18                              | 0.55  | 0.649           | 0.85              | 3.07  | -1.457 |
|                    | 4 | CO <sub>2</sub> H                                    | 104.0                                                   | 1.22                              | 0.51  | 0.622           | 0.82              | 3.399 | -1.488 |
|                    | 5 | $CO_2C_2H_5$                                         | 106.0                                                   | 1.24                              | 0.47  | 0.583           | 0.81              | 3.826 | -1.534 |
|                    | 6 | CH <sub>2</sub> OCH <sub>3</sub>                     | 128.0                                                   | 1.05                              | 0.36  | 0.382           | 0.95              |       |        |
|                    | 7 | CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub>       | 137.0                                                   | 1.02                              | 0.31  | 0.320           | 0.98              |       |        |

В зависимости от природы заместителей по-разному изменяется энергия сопряжения в мономере. По способности вы-

зывать уменьшение электронной плотности на атомах C=C группы заместители располагаются в ряду:


$$-\text{CO}_2\text{H}>-\text{CO}_2\text{CH}_2-\text{CH}_2>-\text{CO}_2\text{C}_2\text{H}_5>-\text{CH}_2\text{OH}>-\text{CH}_2\text{OCH}_2-\text{CH}_2\text{CH}_2}$$

Из анализа этого ряда заместителей, расположенных в порядке понижения реакционности мономеров, видно, что увеличение степени сопряжения в молекуле мономера сопровождается повышением его активности в реакции сополимеризации, что видно по значениям констант сополимеризации в таблице. По мере роста электроноакцепторной способности заместителей наблюдается сдвиг резонансного сигнала в более сильное поле.

На рисунке представлена зависи-

мость произведения констант сополимеризации  $(r_1.r_2)$  от химических сдвигов  $C_{\beta}$  при сополимеризации стирола с рядом мономеров - функциональнозамещенных циклопропилстиролов.

Из рисунка видно, что между величинами  $r_1.r_2$  и  $C_\beta$  наблюдается корреляция. Обнаруженная корреляция интересна тем, что позволяет понять характер изменения электронной плотности на  $\beta$ -атоме углерода двойной связи в мономерах, исходя из химических сдвигов ЯМК  $^{13}$ С.



Зависимость между произведением констант сополимеризации стирола с рядом функциональнозамещенных циклопропилстиролов ( $r_1 \cdot r_2$ ) и  $C_\beta$ ; заместители: п-положение (1-5), о-положение (6,7).

В зависимости от природы заместителя увеличивается энергия сопряжения в мономере в той или иной степени и тем самым увеличивается реакционная способность мономера, понижая реакционность радикала [4]. Это видно и из табличных данных. Здесь наблюдается увеличение значений констант сополимеризации под влиянием как электронодонорных, так и электроноакцепторных заместителей у мономеров и уменьшение полярности радикалов (параметр е). Данные таблицы подтверждают зависимость реакционности мономеров от степени сопряжения и полярности мономеров.

Рассматривая зависимость произведения констант сополимеризации  $(r_1.r_2)$  от  $C_{\beta}$  следует отметить, что все точки хорошо ложатся на прямую линию, что свидетельствует о склонности указанных моно-

меров к чередованию в сополимеризации со стиролом. Данная зависимость дает возможность предсказания новых пар мономеров, склонных давать чередующиеся сополимеры со стиролом. Для некоторых точек (6,7), соответствующих заместителям в орто- положении имели место некоторые отклонения от корреляционной прямой. Эти отклонения, вероятно, объясняются изменением активности мономеров из-за уменьшения степени сопряжения с указанными заместителями ввиду стерических факторов.

Таким образом, установлена линейная корреляция между химическим сдвигом β- углерода в <sup>13</sup>С ЯМР-спектрах и произведением констант сополимеризации для радикальной сополимеризации ряда замещенных циклопропилстиролов со стиролом.

#### ЛИТЕРАТУРА

- 1. Hermann J.J., Teyssie P.H. //Macromolecules. 1978. v.11. № 4. P.839.
- 2. Hatada K., Naqata K., Yuki H. //Bull. Chem. Soc., Japan. 1970. v. 43. P. 3287.
- Roth H. // Plaste und Kautschuk. 1973. v. B. 20. S. 21.
- Гулиев К.Г., Пономарева Г.З., Гулиев А.М. // Журн. прикл. химии. 2005. 78. № 2. С.316-319.
- 5. Гулиев К.Г., Пономарева Г.З., Мамедли С.Б., Гулиев А.М. //Журн. структур. химии. 2009. т.50. № 4. С. 720-722.

- 6. Гулиев К.Г., Пономарева Г.З., Гулиев А.М. // Высокомолек. соед. Б. 2007. т. 49. № 8. С.1577-1581.
- 7. Гулиев К.Г, Пономарева Г.З., Назаралиев Х.Г., Гулиев А.М //Азерб. хим. журн. 2002. №3. С. 45-50.
- 8. Гулиев К.Г., Пономарева Г.З., Назаралиев Х.Г., Гулиев А.М. //Азерб. хим. журн. 2004. № 4. С. 168-172.
- Гулиев К.Г., Пономарева Г.З., Мамедли С.Б. //Процессы нефтехимии и нефтепереработки. 2009. 10. № 2. С. 183-186.
- 10. Оудиан Дж. Основы химии полимеров М.: Мир.1974. C. 614.

#### FUNKSİONALƏVƏZLİ TSİKLOPROPİLSTİROLLARIN <sup>13</sup>C NMR SPEKTRLƏRİNDƏKİ KİMYƏVİ YERDƏYİŞMƏLƏRLƏ ONLARIN AKTİVLİYİNİ XARAKTERİZƏ EDƏN BƏZİ PARAMETRLƏR ARASINDAKI QARŞILIQLI ƏLAQƏ

### K.Q.Quliyev, G.Z.Ponomaryova, Ts.D.Qulverdaşvili, F.İ.Hüseynova, T.N.Hüseynova, R.M.İskəndərova

Bir sıra 2-funksionaləvəzlənmiş 1-(p-, o-vinilfenil) tsiklopropanların  $^{13}$ C NMR spektlərindəki kimyəvi yerdəyişmələri və onların stirolla radikal sopolimerləşməsində aktivlik parametrləri arasında qarşılıqlı əlaqənin olduğu müəyyən edilmişdir. Stirolun bir sıra funksionaləvəzli tsiklopropanstirollarla sopolimerləşmə sabitləri hasilinin  $(r_1 \cdot r_2)$  ilə NMR spektrindəki kimyəvi yerdəyişmələr arasındakı korrelyasion asılılıq  $(C_\beta)$  stirolla nizamlıəvəzlənən sopolimer əmələ gətirən monomer cütlərini qabaqcadan müəyyən etməyə imkan verir.

### INTERRELATION OF CHEMICAL SHIFTS IN THE SPECTRA OF NMR <sup>13</sup>C OF FUNCTIONALLLY SUBSTITUTED CYCLOPROPYL STYRENES AND SOME PARAMETERS OF THEIR REACTIVITY

## K.G.Guliyev, G.Z.Ponomaryeva, Ts.D.Gulverdashvili, F.I.Guseinova, T.N.Guseinova, R.M.Iskenderova

The interrelation between chemical shifts of the spectra of NMR  $^{13}$ C of a series of 2-functionally substituted-1-(p-, o-vinylphenyl) cyclopropanes and parameters of their activity in radical copolymerization with styrene has been established. An identified correlation dependence between derivatives of copolymerization constant of styrene  $R_1 \cdot R_2$  with a series of functionally substituted cyclopropyl styrenes and chemical shifts in the spectra of NMR  $^{13}$ C provides an opportunity of prediction of new pairs of monomers inclined to produce alternating copolymers with styrene.