УДК 541.67 + 546.735 + 546.97

КОНФОРМАЦИОННЫЕ ВЗАИМОДЕЙСТВИЯ МЕТИЛЬНЫХ ГРУПП В ГОМОЛОГАХ ЦИКЛОПЕНТАДИЕНИЛЬНОГО АНИОНА $[(CH_3)_nC_5H_{5-n}]$ Na^+ (n=1-5)

Г.М.Джафаров*, И.Г.Мамедов**, Р.М.Салимов*, С.Г.Мамедова, И.У.Лятифов*

*Институт катализа и неорганической химии им. акад. М.Ф.Нагиева Национальной АН Азербайджана AZ 1143 Баку, пр.Г.Джавида, 113; e-mail: <u>Latifovl@mail.ru</u> **Бакинский государственный университет AZ 1148 Баку, ул. 3.Халилова, 23; e-mail: <u>info@bsu.az</u>

В результате 13 С ЯМР-исследования гомологического ряда натриевых солей циклопентадиенильного аниона $[(CH_3)_nC_5H_{5-n}]$ Nа (n=1-5) установлено, что: а) конформационные взаимодействия метильных групп аналогичны конформационным взаимодействиям в метилбензолах; б) вращение метильных групп в пентаметил-циклопентадиенильном лиганде, в отличие от гексаметилбензола, происходит не согласованно, а относительно свободно.

Ключевые слова: метилциклопентадиенильный лиганд, химический сдвиг, стерическое взаимодействие.

Комплексы переходных металлов с метилциклопентадиенильными лигандами представляют интерес как в практическом [1,2], так и в теоретическом аспекте [3,4].

Изучение кристаллических структур полиметилциклопентадиенильных лексов переходных металлов, в циклопентадиенильном кольце которых четыре или пять метильных групп [3–5], показало, что во всех этих комплексах метильные группы отклонены от плоскости кольца в сторону прочь от атома металла. Одной из возможных причин этого отклонения мы считали наличие стерических (вицидействий между соседними нальными) метильными группами [5]. 13С ЯМР-исследование гомологических рядов несимметричных метилметаллоценов $[(CH_3)_nC_5H_{5-n}MC_5H_5], (M=Fe, Co^+, Rh^+, n=1-$ 5) [6,7] и последующая интерпретация этих результатов в рамках конформационных взаимодействий вицинальных метильных [8] действительно подтвердили наличие пространственных взаимодействий между ними.

Однако в этих комплексах вопрос о возможном влиянии стерического взаимодействия со стороны атома металла на метильные группы оставался не решенным. Чтобы решить этот вопрос, нами в данной ^{13}C работе изучены ЯМР-спектры метильных гомологов циклопентадиенильного аниона, химически не связанного с атомом переходного металла. Результаты этого исследования приведены в таблице 1. Особенностью этих спектров является то, кажлый раз, когда В пиклопенталиенильном кольце появляется соседняя СН₃-группа, резонансный сигнал углеродного атома (13С) предыдущей СН₃группы смещается в сильное магнитное поле на величину 1.97-2.1 м.д. В данной работе мы покажем, что эта особенность ¹³С ЯМР-спектров метильных гомологов циклопентадиенильного аниона связана с конформационными взаимодействиями метильных групп, проявляющимися в электронных эффектах.

аниона [(СП $_{3}$) $_{1}$ С $_{5}$ П $_{5}$ - $_{1}$], (П-1-3) (растворитель – деитерированный тетрагидрофуран).									
	Метилциклопента-	[CH ₃ C ₅ H ₄]	$[(CH_3)_2C_5H_3]$	$[(CH_3)_3C_5H_2]$	[(CH ₃) ₄ C ₅ H]	[(CH ₃) ₅ C ₅]			
	диенильный анион								
		15.89	15.62	15.54(1)**	14.20	11.57			
		1	1	10 (5(0)	12.00				

Табл.1. ¹³С-химические сдвиги (δ) метильных групп в гомологах циклопентадиенильного аниона [(CH₃)_nC₅H_{5-n}]⁻, (n=1-5) (растворитель – дейтерированный тетрагидрофуран).

На рис. 1 приведены изученные гомологи циклопентадиенильного аниона.

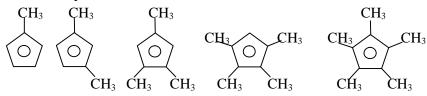


Рис. 1. Метильные гомологи циклопентадиенильного аниона

Анализ значений химического сдвига (б) ¹³С-атома метильных групп (табл. 1) позволяет выделить 3 группы метильных заместителей в циклопентадиенильном колыне:

- 1. одиночные метильные группы со значением δ^{13} C(CH₃) \approx 15,54–15,89 м.д.;
- 2. метильные группы с одной соседней CH_3 -группой $\delta \approx 13,65-14,20$ м.д.;
- 3. метильные группы с двумя соседними CH_3 -группами $\delta \approx 11,57$ –12,00 м.д.

Такая картина взаимного расположения резонансных сигналов 13 С-атомов метильных групп в ¹³С ЯМР-спектрах полиметилциклопентадиенильных анионов $[(CH_3)_nC_5H_{5-n}]^$ напоминает расположение соответствующих ¹³С(СН₃)сигналов в гомологическом ряду метилбензолов [9]. Поэтому, если причиной ¹³С(СН₃)-сигналов смещения являются конформационные взаимодействия метильных групп, то значения химических 13 C(CH₃) сдвигов метилциклопентадиенильных анионов также можно выразить посредством аддитивных параметров, отражающих конформационные особенности, существующие между смежными метильными группами.

Действительно, нам удалось скоррелировать значения химических сдвигов 13 C(CH₃)-групп в метилциклопентадиенильных анионах линейным выражением

$$\delta^{13}C_{(i)} = \delta^{13}C_{(n=1)} + \sum p_{ik} \cdot \Delta \delta_k,$$

где $\Delta\delta_k$ — инкременты заместителя, отражающие геометрические особенности соседних CH_3 -групп, p_{ik} — факторы заселенности, отражающие время взаимодействия индикаторной метильной группы ($^{13}CH_3$) с соседними метильными группами для каждой из указанных на рис. 2 конформаций.

Как и в случае метилбензолов, для рационализации наших спектральных данных достаточно рассмотреть 3 наиболее важные конформации (рис. 2).

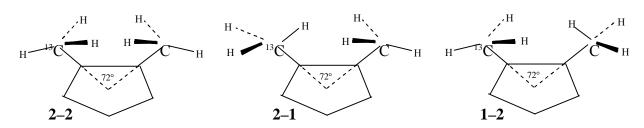


Рис. 2. Наиболее важные конформации в 1,2-диметилциклопентадиенильном анионе.

^{** – () –} относительные интенсивности резонансных сигналов.

Положение p_{1-2} p_{2-2} p_{2-1} $p_{\scriptscriptstyle M}$ СН₃-групп 2 1.3 1 4 2 3 1.2 1 1 0.33 2 1.4 0.67 4 23 0.67 1 0.33 1 5 1-5 0.67 1 0.33 2 1-5 2[9] 1

Значения фактора заселенности конформаций, приведенных на рис. 2, даны в табл. 2.

Табл. 2. Факторы заселенности (p_{ik}) конформаций для гомологов циклопентадиенильного аниона [(CH_3) $_nC_5H_{5-n}$] $^-$, (n=1-5).

Используя экспериментальные значения химических сдвигов 13 C(CH₃)-групп, нами вычислены инкременты 13 C-химического сдвига для 3-х наиболее

важных (2-2, 2-1, 1-2) конформаций вицинальных метильных групп и для CH_3 группы в мета- (м) положении (табл. 3).

Табл.3. Инкременты 13 С-химического сдвига ($\Delta\delta$, м.д.) ,вычисленные для гомологов [(CH₃)_nC₅H_{5-n}]⁻, (n=1-5).

Конформация СН ₃ -групп	2–2	2–1	1–2	мета-положение
Инкремент (Δδ)	-1.97	-2.06	-0.74	-0.27

Однако конформационные взаимодействия СН₃-групп в пентаметилциклопентадиенильном анионе несколько отличаются от конформационных взаимодействий в гексаметилбензоле. В ¹³С ЯМР-спектрах это отличие проявляется в том, что, когда в тетраметилциклопентадиенильном анионе появляется еще одна - пятая метильная группа, резонансный сигнал 13 C(CH₃)-групп замещенного пентаметилполностью циклопентадиенильного аниона продолжает смещаться в сильное магнитное поле по сравнению с сигналом тетраметильного производного, в то время как в ряду метилбензолов [9] сигнал ¹³С(СН₃)-групп в молекуле полностью замещенного гексаметилбензола смещается слабое магнитное поле по сравнению с сигналом в пентаметилбензоле. Последнее было интерпретировано авторами [9] как результат роста стерических взаимодействий метильных групп в гексаметилбензоле, заставляющих метильные группы

вращаться согласованно, т.е. в конформации 2–1 и 1–2.

В пентаметилциклопентадиенильном анионе дальнейшее сильнопольное смещение резонансного сигнала ¹³С(СН₃)-групп указывает на то, что в этом анионе сохраняется более выгодная 2–2 конформация метильных групп (рис. 2), которая имела место как для всех метильных производных бензола [9], так и для три- и тетраметильных производных циклопентадиенильного аниона.

Указанную отличительную особенность конформационных взаимодействий метильных групп пентаметилциклопентадиенильного аниона и гексаметилбензола мы объясняем тем, что в пентаметилциклопентадиенильном лиганде больший (72°), по сравнению с метилбензолами (60°), угол между углеродными атомами соседних СН₃-групп (рис.2) позволяет вицинальным метильным группам циклопентадиенильного аниона находиться несколько

дальше друг от друга и потому вращаться независимо друг от друга, т.е. не

согласованно, как это имеет место в гексаметилбензоле.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Натриевые соли метилциклопентадиенильных анионов синтезированы методами, указанными в работе [7].

ЯМР ¹³С-спектры сняты в дейтери-

рованном тетрагидрофуране на спектрометре Bruker-300 с рабочей частотой 75 Мгц и внутренним эталоном — тетраметилсиланом.

ЛИТЕРАТУРА

- 1. Nxumalo E.N., Chabalala V.P., Nyamori V.O. at al. Influence of methylimidazole isomers on ferrocene-catalysed doped carbon nanotube synthesis. //J. Organometal. Chem. 2010. V.695. P.1451–1457.
- 2. Zhu T., Wu Q., Chem P., Ding Y. A novel waist-regulable dunbbel-like nanosuperstructure of (3-carboxy-1-acyl-propyl)-ferrocene. //J. Organometal. Chem. 2009. V.694. P.21–26.
- 3.Tomoyuki Mochida, Kenji Yoza. Structural investigation of the phase in decamethylferrocene—acenaphthenequinone charge-transfer complex. // J. Organometal. Chem. 2010. V.695, P.1749–1752.
- 4. Hanns-Dieter Amberger, Hauke Reddmann. First Raman spectroscopic polarization measurements on uniformly oriented sandwich complex molecules $Bis(\eta^5-pentamethylcyclopentadienyl)$ ruthenium. // J. Organometal. Chem. 2010. V.695. P.2455–2460.
- 5. Struchkov Yu., Andrianov V.N., Salnikova T.N. et all. Crystal and molecular structures of two polymethylferrocenes. //J. Organometal. Chem. 1978. V.145. P.213–218.
- 6. И.У.Лятифов, Г.М.Джафаров, П.В.Петровский. Синтез и ЯМР исследование симметричных и несимметричных полиметилциклопентадиенильных сэндвичей родия. //Тезисы докладов IV Всесоюзной конф. по металлоорганической химии, Казань. 1988. с. 82.
- І.У.Летифов, Г.М.Джафаров, П.В.Петровский. Синтез и NMR исследование симметрисhных и

- несимметриснніх полиметилѕиклопентадиенилныкh сендвисней родиуа. //Тезисі докладов IV Всесоуизной конф. по металлоорганиснеской кhимии, Казан. 1988. с. 82.
- 7. И.У.Лятифов, Г.М.Джафаров, П.В.Петровский. ЯМР-исследование сим. и несим. полиметилродоцена. //Металлоорганическая химия. 1989. т.2. №5. с. 990–996.
- И.У.Летифов, Г.М.Джафаров, П.В.Петровский. NMP-исследование сим. и несим. полиметилродовена. //Металлоорганисhескауа khимиуа. 1989. т.2. №5. с. 990–996.
- 8. И.Г.Мамедов, А.Б.Оруджева, Р.М.Салимов и др. Конформационные взаимодействия метильных групп в несимметрично замещенных метилметаллоценах $[(CH_3)_nC_5H_{5-n}MC_5H_5]$ (M=Fe, Co⁺, Rh⁺, n=1–5). // Bakı Dövlət Universitetinin Xəbərləri. 2013. 3. s. 82.
- И.Г.Мамедов, А.Б.Оруджева, Р.М.Салимов и др. Конформаѕионные взаимодействиуа метилныкһ групп в несимметрисhно замеshен- ныкһ метилметаллоѕенакһ $[(CH_3)_nC_5H_{5-n}MC_5H_5]$ (M=Fe, Co⁺, Rh⁺, n=1–5). // Baki Devlet Universitetinin Kheberleri. 2013. 3. s. 82.
- 9. Wolfoenden W.R., Grant D.M. ¹³C NMR.V. Conformational dependence of the chemical shifts in the methylbenzenes/ // J. Amer. Chem. Soc. 1966. v.88. P.1496–1502.

TSİKLOPENTADİYENİL ANİONUNUN HOMOLOQLARINDA $[(CH_3)_nC_5H_{5-n}]$ Na^+ (n=1-5) METİL QRUPLARI ARASINDA KONFORMASİYA QARŞILIQLI TƏSİR

Q.M.Cəfərov, İ.Q.Məmmədov, R.M.Səlimov, S.Q.Məmmədova, İ.U.Lətifov

Tsiklopentadiyenil anionunun metil homoloqlarının $[(CH_3)_nC_5H_{5-n}]^-Na^+$ (n=1-5) 13 Ъ HMP цѕиlи il_{∂} тядгиги нятиъясиндя мцяййян едилмишдир ки, а) metiltsiklopentadiyenil anionlarında метил групларынын конформасийа гаршылыглы tәsiri benzolun metil homoloqlarındakı kimidir; б) пентаметилтсиклопентадиенил апіопина метил групларынын фырланмасы, щексаметилбензолда olduğunдaн фяргли олараг, сярбястдир.

Ачар сюзляр: metiltsiklopentadiyenil anionu, кимйяви сцрцштя, стерик (фяза) гаршылыглы тясири.

CONFORMATIONAL INTEREACTIONS OF METHYL QROUPS IN METHYLCYCLOPENTADIENYL ANIONS $[(CH_3)_nC_5H_{5-n}]$ (n=1-5)

G.M.Jafarov, İ.G.Mammadov, R.M.Salimov, S.Q.Mammadova, İ.U.Latifov

Following an analysis of ^{13}C NMR homological chain of cyclopentadienyl anion $[(CH_3)_nC_5H_{5-n}]$ (n=1-5), it has been determined that: a) conformational interactions of methyl groups in methylcyclopentadienyl anions are similar to methylbenzens; b) rotation of methyl groups in pentamethylcyclopentadienyl ligand occurs, as distinct from hexamethylbenzen, not concertedly, but relatively free,.

Keywords: methylcyclopentadienyl ligand, chemical shift, steric interaction.

Поступила в редакцию 15.03.2014.