ФУРФУРИЛПРОИЗВОДНЫЙ СВЯЗУЮЩИЙ КОМПОНЕНТ МНОГОЦЕЛЕВОГО НАЗНАЧЕНИЯ

В.А.Джафаров

Институт полимерных материалов Национальной АН Азербайджана

Разработан способ получения многофункциональных азид- и пропиленхлоргидриновых аминотиоэфирных связующих компонентов на основе 1-фурфурилового эфира 2,3-эптииопропана, амина и эпихлоргидрина в качестве высокоэнергетического химического источника для изготовления высоконаполненных дисперсных материалов многоцелевого назначения.

Одной из актуальных проблем современной прикладной химии, химической и нефтехимической технологии является разработка новых легкодоступных, взрывобезопасных и безотходных высокоэнергетических связующих компонентов для изготовления химических источников многоцелевого назначения [1-5].

В начале 80-х годов ХХ века военносилы США финансировали воздушные программу ПО изучению глицидилазидполимера (GAP). Производство GAP было доведено до уровня 100 кг, и теперь его можно приобрести в компаниях ЗМ (США) и SNPE (Франция). Однако GAP совместим с большинством пластификаторов. Механические свойства топлив на основе GAP также нуждаются улучшении.

В области связующих для твердых ракетных топлив получил известность ряд полимерных связующих соединений, содержащих такие энергетические функциональные группы, как азидная $(-N_3)$, нитрогруппа (С-NO2), нитратная группа $(O-NO_2)$, нитроаминная группа $(N-NO_2)$ или менее распространенная геминальная дифтораминная группа (-NF₂). Наиболее азидистной является азидная группа. Тепло, выделяющееся при распаде одной такой группы, составляет около 355 кДж. Первым этого класса полимеров разрабатываться глицидилазидполимер (GAP), который приобрел наибольшую

известность в 90-х годах XX века [6-11].

Разработаны новые составы и новые пути получения связующих компонентов с высокой энергией хлора с высоким содержанием кислорода, являющихся привлекательными как с экономической точки зрения, так и с точки зрения безопасности [12-16].

С целью получения гетероциклических аминотиоэфиров полиглицидазидгидрина использован фурфурилсодержащий 1,2-эпитиопропановый эфир (ФФТГ) и их аминотиолы (ФФ-АТЭ). Для введения хлоргидриновых групп в молекулу ФФТГ проведена реакция фурфурилсордержащего $(\Phi \Phi - AT \Theta)$ аминотиола эфира эпихлоргидрином (ЭХГ) в присутствии катализатора — $BF_3(OC_2H_5)_2$ или $SnCl_4$ в токе азота. Показано, что взаимодействие ЭХГ с тиольными группами, имеющимися ФФ-АТЭ, молекуле приводит образованию вторичного спирта хлоргидрина, способного реагировать также с ЭХГ. другой молекулой Указанная поликонденсация с раскрытием эписульфидного цикла продолжает поглощать больше ЭХГ, приводя к образованию пятишестифрагментного полифункционального олигомера с концевыми хлор- и азидгидриновыми группами. Реакция экзотермична ДЛЯ управления И олигомеризацией желательно провести ее более низкой температуре нижеследующей схеме:

Выходы продуктов реакции по схемам (II-V) были высокими и колебались в пределах 86-95%.

Показано, что получение полифункционального олигомера с различными молекулярными массами зависит от подачи в различных соотношениях ЭХГ. Молекулярные массы полученных олиго-

меров определены методом экслюзионной хроматографии (ЭХ) и криоскопии. Причем из данных ЭХ видно, что синтезированные олигомеры обладают довольно узким распределением молекулярной массы, о чем свидетельствует величина $\overline{M}w/\overline{M}n$, которая меняется в интервале 1.13-1.15.

Таб.1. Данные криоскопии и экслюзионной хроматографии

\overline{MM} криоскопии		Данные экслюзионной хроматографии		
M	n*	$\overline{\mathbf{M}}_{\mathrm{w}}$	$\overline{\mathbf{M}}_{\mathtt{n}}$	$\overline{\mathrm{M}}_{\mathrm{w}}/\overline{\mathrm{M}}_{\mathrm{n}}$
640	2	740	630	1.17
940	5	1090	950	1.15
2420	10	2760	2450	1.13

*Число п.

Молекулярный вес по данным ЭХ (табл. 1) составляет 2450, где n=10.

В нижеследующий таблице указаны превращения фурфурилсодержащего диэтиламинотиоэфира полипропиленхлоргидрина (ФФ-АТЭ-ППХГ) в олигомер

фурфурилсодержащего диэтиламинотиоэфира полиглицидилазидгидрина (ФФ-АТЭ-ПГАзид.Гидр.).

Таб. 2. Превращения	і ФФ-АТЭ-ПЭХГ в	з ФФ-АТЭ-ПГАзид.Гидрин.
---------------------	-----------------	-------------------------

Растворитель	T-pa, °C	Время, час	Конверсия
ДМФ	106	10	72.0
ДМСО	75	30	75.0
ДМСО	95	18	~ 100.0
ДМСО	105	10	~ 100.0

Структура полученных по схеме (V) полифункциональных хлоргидриновых олигомеров подтверждена также и спектральными методами.

В ИК-спектре исчезновение пика при 750 см $^{-1}$, соответствующего С-Cl связи в ФФ-ПЭХГ, и появление интенсивного пика при 2100см $^{-1}$ соответствующего С-N $_3$ связи, свидетельствует превращению группы CH $_2$ -Cl в CH $_2$ N $_3$. Полоса в области 3560 см $^{-1}$ показывает присутствие гидроксильных групп в молекуле олигомера. По данным

ИК-спектроскопии было обнаружено, что для полного превращения CH_2 -Cl в CH_2N_3 потребовалось 10 ч при 105°C.

ЯМР-спектр ясно показывает сигналы протонов CH_2 групп фурфурилсодержащего диетиламинового тиоэфира пропиленхлоргидрина ($\Phi\Phi$ -АТЭ-ПЭХГ) в пределах 1.9-2.1м.д., непредельность протонов фурфурилового эфира найдена в 5.2-5.6 м.д. и сигналы всех остальных протонов полихлоргидрина найдены в пределах 3-4 м.д.

$$\begin{array}{c|c} \hline \\ O \\ \hline \end{array} \\ \begin{array}{c} CH_2O \cdot CH_2 \cdot CH - S - CH_2 - CH - O \\ CH_2N \cdot C_2H_5 \\ \hline \\ C_2H_5 \\ \end{array} \\ \begin{array}{c|c} CH_2 - CHO \\ CH_2CI \\ \hline \\ CH_2CI \\ \end{array} \\ \begin{array}{c|c} CH_2 - CH - OH \\ CH_2CI \\ \hline \\ CH_2CI \\ \end{array}$$

Показано, что для полного превращения по схеме (V) CH_2Cl группы в CH_2N_3 в ДМСО при 95°С потребовалось 18 часов. Однако при 75°С превращение было неполным даже после 30 ч. При использовании ДМФА в качестве растворителя превращение было медленным по сравнению с олигомеризацией в растворе ДМСО.

Установлено, имеющиеся ЧТО молекуле полифункционального олигомера C-S-C и С-О-С связи с аминными и концевыми гидроксильными группами включаться процесс могли также В отверждения ФФ-АТЭ-ПЭХГ. Если скореакции отверждения концевых гидроксильных групп ФФ-АТЭ-ПГАзид. Гидрина с ФФ-АТЭ-ПЭХГ сравнима, тогда полифункциональный многокомпонентный олигомер будет распределяться в сети Предполагается, отверждения. ФФ-АТЭсовместимость олигомера ПГАзид.Гидрина с ФФ-АТЭ-ПЭХГ и его

высокая энергия из-за присутствия аминной и полиазидной группы, в том непредельного фурфилового числе фрагмента с концевыми гидроксильными и хлорметиленовыми группами повысит скорость И сжигания механические свойства олигомеров при использовании их в качестве добавки в ракетном топливе.

Показано [4], что ФФ-АТЭ-ПГАзид-Гидр. более чем пятишестифрагментный полифункциональный олигомер с тиоэфирными, азидными и концевыми гидроксильными группами и атомами хлора у непредельного фурфурилсодержащего эфира, что делает его ценным связующим компонентом для высокоэнергетического изготовления источника для получения химического высоконаполненных сыпучих материалов многопелевого назначения.

ЛИТЕРАТУРА

- 1. Шидловский А.А. Основы пиротехники. М.: Машиностроение. 1964. с.397.
- 2. Аэрозоли в сельском хозяйстве. Под ред. Амелина А.Г. М.: Химия. 1965. с.346.
- 3. Волжин А.Н., Сизов Ю.Г. Борьба с самонаводящимися ракетами. М.: Военное издательство. 1983. с.276.
- 4. A.c. № 298525 CCCP. 1989.
- 5. Джафаров В.А. // Азерб. химический журнал. 2002. №3. С.101.
- 6. Arber A., Bagg C., Colcough E. et al. / Proc. 21st Intern. Ann. Conf. of ICT. Karlsruhe, Germany. 1990. P. 3/1-3/11.
- 7. Nazare A.N., Asthana S.N., Singh H. // J. Energ. Mater. 1992. V. 10. P. 4.
- 8. Ambiko Devik., Bhagawan S.S., and Niman K.N., // J.Aero.Soc. of India. 84(4), 319.(1996).

- 9. Vasudevan V., Sundararajan G. // Propellants, Explosives, Pyrotechnics. 1999. V.24. P. 295.
- 10. Sanderson A.G. et al. / Proc. 32nd Intern. Ann. Conf. of ICT. 2001. P. 107/1-107/9.
- 11. Asthana S.N., Nukundan T. // Chapter in: Advances in Solid Propellant Technology. Tata McGraw Hill. India. 2002. P. 61-86.
- 12. Галавер М.Б., Сивабалан М, Аннияппан М. и др. // Физика горения и взрыва. 2007. Т. 43. № 1. С. 72.
- 13. Джафаров В.А. / Тез. докл. VI Межд. нефтехим. конф. Баку. 2005. С. 165.
- 14. Джафаров В.А. / Тез. докл. III Межд. науч. конф. "Тонкий органический синтез и катализ". Баку. 2005. С. 76.
- 15. Патент 2251550 (РФ). // Б.И. 2005. № 13.
- 16. Патент 2284330 (РФ) // Б.И. 2006. № 27

ÇOXTƏYİNATLI ФУРФУРИЛ ТЮРЯМЯЛИ ЯЛАГЯЛЯНДИРИСИ КОМПОНЕНТ В.Я.Сяфяров

1-Фурфурил-2,3-епитиопропан ефиринин амин, епихлорщидрин ясасында азид, пропиленхлорщидрин вя тиоефир тяркибли ялагяляндириси компонент ишляниб щазырланмышдыр вя йцксяк енерјили кимйачі мянбяй кими чохкомпонентли дисперс материаллар цчцн чохмягсядли истифадяси нязярдя тутулмушдур.

FURFURYL DERIVATIVE BINDING COMPONENT OF MULTIPURPOSE ASSIGNMENT V.A.Jafarov

The method of preparation of multifunctional azide- and propylenechlorhydrin aminothioether binding components on the basis of 1-furfuryl ether of 2,3-epithiopropane, amine and epichlorhydrin as high energetic chemical source for producing of highly filled disperse materials of multipurpose assignment has been developed.