ВЛИЯНИЕ СОДЕРЖАНИЯ ЦЕРИЯ НА ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ (Bi₂Te₃+Sb₂Se₃+Sb₂Te₃+SbJ₃) "n"-ТИПА

Ф.И.Исмаилов*, И.И.Алиев**, Р.М.Аббасов***

Методами физико-химического анализа (ДТА, МСА, РФА, а также измерением микротвердости и плотности) исследовано влияние содержания церия на физико-химические свойства твердых растворов ($Bi_2Sb_5Se_3Te_6I_3$) "п "-типа и построена микродиаграмма состояния. Установлено, что при комнатной температуре в твердом растворе на основе ($Bi_2Sb_5Se_3Te_6I_3$) п"- типа дополнительно растворяется 4 ат. % Се. В системе ($Bi_2Sb_5Se_3Te_6I_3$) $I_{-x}(Ce)_x$ состав эвтектики отвечает 10 ат. % Се и плавится при 360^{0} С.

Известно, что для прямого преобразования электрической энергии в тепловую широко применяют термоэлектрические материалы (ТЭМ) на основе халькогенидов висмута и сурьмы, обладающие подходящими термоэлектрическими свойствами в интервале температур 200-300 К [1-3].

При введении SbI_3 в состав ($Bi_2Te_3 + Sb_2Te_3 + Sb_2Se_3 + SbI_3$) твердого раствора "р"-типа термоэлектрические материалы меняют свой знак и становятся проводниками "п"- типа. Недостаток этих материалов заключается в том, что они слоистые и легко измельчаются. С целью увеличения прочности в состав твердого раствора ($Bi_2Te_3 + Sb_2Te_3 + Sb_2Se_3 + SbI_3$) \rightarrow ($Bi_2Sb_5Se_3Te_6I_3$) "п"- типа добавляется элементарный Се до 15 мол %.

В настоящей работе приводятся условия синтеза и результаты исследования некоторых физико-химических свойств твердого раствора ($Bi_2Sb_5Se_3Te_6I_3$), а также влияние содержания Се на свойства твердого раствора "n"-типа.

Ранее нами изучено влияние содержания элементов Pr и Sm на физикохимические свойства твердых растворов (Bi_2 Sb_5 $Se_3Te_6I_3$) "n"-типа [4,5]. Система (Bi_2 Sb_5 $Se_3Te_6I_3$)_{1-x}(Ce)_x не исследована.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЪ

Для синтеза сплавов системы использовали элементы: висмут марки В-4, сурьму марки Sb-000, теллур марки ТВ-3, селен особо чистый, марки В-4 и иод дважды дистиллированный.

Вначале были синтезированы Bi_2Te_3 , Sb_2Se_3 , Sb_2Te_3 и SbI_3 . Далее сплавы системы синтезировали из компонентов: твердых растворов ($Bi_2Sb_5Se_3Te_6I_3$) и элементарного церия (Ce) в эвакуированных до 0.1333 Па кварцевых ампулах в интервале 800-1100°C.

Для получения равновесного состояния сплавы подвергали гомогенизированному отжигу в вакуумированных кварцевых ампулах при температурах на 20°С ниже солидуса в течение 420 ч.

Исследование системы $(Bi_2Sb_5Se_3Te_6I_3)_{1-x}(Ce)_x$ проводили методами дифференциально-термического (ДТА), микроструктурного (МСА), рентгенофазового (РФА) анализов, измерением микротвердости и определением плотности.

ДТА образцов осуществляли на низкочастотном терморегистраторе HTP - 73 с Pт-Pт/Rh термопарой. Скоростъ нагрева составляла 10 град/мин.

Микроструктурный анализ (МСА) выполняли на отшлифованных и полиро-

 $[^]st$ Институт физики Национальной АН Азербайджана

^{**}Институт химических проблем Национальной АН Азербайджана

^{***} Азербайджанский технический университет

ванных поверхностях сплавов на микроскопе МИМ-8, травителем служил раствор состава: 10 мл конц. $H_2SO_4+5\Gamma$ $K_2Cr_2O_7 + 90$ мл H_2O , время травления 15-20 с. Микротвердость измеряли на микротвердомере ПМТ-3 при нагрузках, выбранных результате изучения измерения микротвердости каждой фазы от нагрузки.

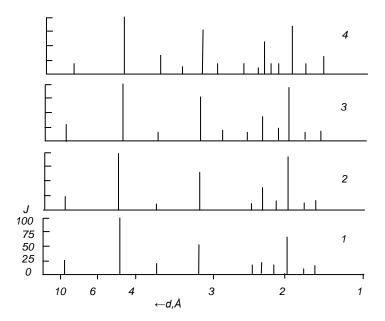
РФА проводили на дифрактометре ДРОН-3 с $CuK\alpha$ –излучением и никелевым фильтром. Плотность сплавов системы определяли пикнометрическим методом, в качестве наполнителя применяли толуол.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Сплавы системы $Bi_2Sb_5Se_3Te_6I_3)_1$ $_x(Ce)_x$ получаются в виде компактных слитков серебристо-серого цвета. Сплавы устойчивы по отношению к воздуху, воде и органическим растворителям, сильные минеральные кислоты (HNO₃, H_2SO_4) интенсивно разлагают их.

Дифференциально-термический анализ показал, что на термограммах сплавов системы наблюдаются два эндотермичес-

ких эффекта. Установлено, что фиксированные эффекты на кривых нагревания и охлаждения обратимы.


Микроструктурный анализ сплавов показал, что в области концентраций 0-3.5 ат.% Се сплавы однофазные, в остальных - двухфазные. Эвтектика образуется при температуре (360^{0} C) и составе 4 ат.% Се.

Для подтверждения ДТА, МСА проводили рентгенофазовый анализ. РФА сплавов системы $(Bi_2Sb_5Se_3Te_6I_3)_{1-x}(Ce)_x$ показал, что на дифрактограммах сплавов в области 0-3.5 ат.% Се дифракционные максимумы идентичны. С увеличением содержания Се на дифрактограммах спладифракционные имеются исходных и промежуточных компонентов (рис.1). При определении микротвердости сплавов системы (Bi₂Sb₅Se₃Te₆I₃)_{1-x} (Ce)_xобнаружены два ряда значений: светлая фаза соответствует значению α-твердых растворов (950 – 1150) МПа, серая фаза соответствует микротвердости церия 2500 МПа.

Зависимости некоторых физико-химических свойств твердых растворов $Bi_2Sb_5Se_3Te_6I_3)_{1-x}$ (Ce) $_x$ от количества Се приведены в таблице.

Зависимости некоторых физико-химических свойств твердых растворов $Bi_2Sb_5Se_3Te_6I_3)_{1-x}(Ce)_x$ от количества Ce.

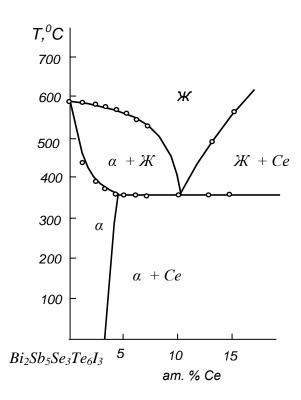

Состав, мол. %		Термические	Плотность	Микротвердость фаз, МПа	
Bi ₂ Sb ₅ Se ₃ Te ₆ I ₃	Ce	эффекты нагревания, °С	10 ³ кг/м ³	I(α)	II(Ce)
				P = 0.1 H	P = 0.2 H
100	0.0	580	7.80	950	-
98	2.0	410, 580	7.81	980	-
97	3.0	380, 575	7.85	1000	-
96,5	3.5	370, 570	7.85	1100	-
96	4.0	360, 565	7.82	1150	-
95	5.0	360, 560	7.79	1150	-
94	6.0	360, 555	7.78	1150	-
93	7.0	360, 550	7.75	-	-
90	10	360	7.74	Эвт.	Эвт.
88	12	360, 520	7.72	_	2500
85	15	360, 590	7.70	_	2500

Рис.1. Схемы рентгенограмм сплавов системы $(Bi_2Sb_5Se_3Te_6I_3)_{1-x}$ (Ce)_x : 0(1), 2(2), 4(3) и 10 ат. % Се (4).

Комплекс данных, полученных при исследовании вышеуказанными методами, позволил построить микродиаграмму состояния ($Bi_2Sb_5Se_3Te_6I_3$)_{1-х} (Ce)_х (рис.2). В системе обнаружена двойная эвтектика,

состав которой отвечает 10 мол.% Се и температуре плавления при 360^{0} С. Ниже линии солидуса кристаллизуются однофазные (α) и двухфазные сплавы (α +Ce).

Рис.2. Микродиаграмма системы $Bi_2Sb_5Se_3Te_6I_3)_{1-x}$ (Ce)_x

ЛИТЕРАТУРА

- 1. Коленко Е.А. Термоэлектрические охлаждающие приборы. М.: Hayka.1967.258 с. 2. H.I.Coldsvid. Thermoelectric refrigeration. N.Y. 1964. 230 р.
- 3. Гольцман Б.Н., Кудинов В.А., Смирнов И.А. Полупроводниковые термоэлектри-

ческие материалы на основе Bi_2Te_3 . М.: Наука. 1972. 190 с.

- 4. Исмаилов Ф.И, Алиев И.И, Алиев А.А. // Химические проблемы. 2006. № 4.С. 425.
- 5. İsmayılov F.İ, Əliyev İ.İ, F.M.Sadıqov və b. // Azərb.kimya jurnalı. 2008 . № 1.S.67.

SERİUM ELEMENTİNİN (Bi₂Te₃+Sb₂Se₃+Sb₂Te₃+SbJ₃) "n"-TİP BƏRK MƏHLULUNUN FİZİKİ – KİMYƏVİ XASSƏLƏRİNƏ TƏSİRİ

F.İ.İsmayılov, İ.İ.Əliyev, R.M.Abbasov

Fiziki-kimyəvi analiz metodları (DTA, MQA, RFA, həmçinin xüsusi çəkinin və mikrobərkliyin hesablanması) ilə Ce elementinin (Bi $_2$ Sb $_5$ Se $_3$ Te $_6$ I $_3$) bərk məhlulunun fiziki-kimyəvi xassələrinə təsiri öyrənilmiş və sistemin mikrodiaqramı qurulmuşdur. Müəyyən edilmişdir ki, (Bi $_2$ Sb $_5$ Se $_3$ Te $_6$ I $_3$) mürəkkəb tərkibli "n"-tip bərk məhlulunda əlavə olaraq 3,5 at. % Ce həll olur. Sistemdə əmələ gələn evtektikanın tərkibi 10 at. % Ce, ərimə temperaturu isə 360^{0} C –dir.

THE INFLUENCE OF CERIUM CONTENT ON PHYSICOCHEMICAL PROPERTIES OF SOLID SOLUTIONS (Bi₂Te₃+Sb₂Se₃+Sb₂Te₃+SbJ₃) OF,, n "-TYPE

F.I.Ismayilov, I.I.Aliyev, R.M.Abbasov

Using methods of physical-chemical analysis (DTA, MSA, RFA, as well as measuring of microhardness and density), we examined the influence of Ce content physicochemical properties of solid solutions ($Bi_2Sb_5Se_3Te_6I_3$) of ,,n"-type to build a microdiagram conditions. It has been established that at room temperature 4 at.% Ce is dissolved in a solid solution on the basis of $Bi_2Sb_5Se_3Te_6I_3$ of ,,n"-type. Within the system ($Bi_2Sb_5Se_3Te_6I_3$)_{1-x}(Ce)_x the eutectics meet 10 at.% Ce and metls at 360 C.