ВЛИЯНИЕ МОДИФИКАЦИИ НА СВОЙСТВА ВУЛКАНИЗАТОВ БИНАРНЫХ СМЕСЕЙ ПОЛЯРНЫХ КАУЧУКОВ С ПОЛИИЗОПРЕНОМ

Н.И.Курбанова, Н.М.Сеидов

Институт полимерных материалов Национальной АН Азербайджана, Сумгайыт

Исследовано влияние модифицирующего агента (трихлоруксусной кислоты) на прочностные и термические свойства вулканизатов на основе бинарных смесей полярных каучуков (бутадиен-нитрильного и бромизобутилен-изопренового) с полиизопреном.

Современные тенденции в создании и применении полимерных материалов состоят не в синтезе новых соединений, а в поисках рациональных путей использования крупнотоннажных промышленных полимеров. Это достигается или их физикохимической модификацией или комбинированием различных материалов с целью создания композиций, в которых оптимально сочетаются желаемые свойства компонентов [1-4].

Среди разнообразных полимерных материалов эластомеры занимают одно из важных мест. Интенсификация экономики, необходимость создания новых прогрессивных технологий и техники обуславливают необходимость разработки и создания

эластомерных композиций с улучшенным комплексом свойств. Условия смешения и переработки смесей эластомеров, введение различных модифицирующих добавок имеют существенное значение для формирования их структуры и свойств [5-8].

Ранее было показано влияние наполнителя на прочностные, термические и упруго-релаксационные свойства вулканизатов бинарных смесей полярных каучуков с полиизопреном [9].

Представленная работа посвящена изучению влияния модификатора на свойства вулканизатов бинарных смесей бутадиен-нитрильного (СКН) и бромизобутилен-изопренового (БИИК) каучуков с полиизопреном (СКИ).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использованы: СКИ марки Cariflex IR 309 фирмы "Shell"; СКН марки NB 192 HF, содержащий 27% акрилонитрила, фирмы "BSL Olefinverbund GmbH Schkopau"; БИИК типа Polysar 2030, содержащий 2% брома, фирмы "Bayer", технический углерод (Т.У.) типа N330, модифицирующий агент — трихлоруксусная кислота (ТХУК), т.пл. 58°С.

Смешение исходных компонентов проводили в лабораторных условиях в смесителе Brabender Plasticorder (объем 60 см³, начальная температура – 50° С, степень наполнения – 0.75) в течение 6 мин. для систем без наполнителя и в течение 7, 10, 15 мин. для наполненных композиций. Подобрана рецептура и режим смешения (Th = 50° C, Tk = $60-65^{\circ}$ C, n = 60 об мин⁻¹). Вулканизующая система для смесей (мас.ч.) СКН/СКИ: сера – 1.5, стеариновая кислота

-2.0, оксид цинка -5.0, альтакс -0.8; БИИК/СКИ: сера -2.0, стеариновая кислота -2.0, оксид цинка -5.0, тиурам -1.3, альтакс -0.65. Соотношение компонентов в композициях (мас.ч.): СКН (БИИК):СКИ:Т.У.:ТХУК =50:50:50:50:5.

Время введения компонентов в смеситель (сек.): СКН (БИИК) – 0, ТХУК – 60, СКИ – 120, Т.У. – 180 (по частям в три приема), сера+стеариновая кислота+оксид цинка+ускорители – 240.

Определены условия вулканизации для каждой композиции на Goettfert Elastograph (T = 145°C). Вулканизацию смесей осуществляли в формах толщиной 1 мм при 145°C в Coulin compression moulding machine.

Физико-механические испытания при квазистатическом нагружении проводили на разрывной машине "Zwick 1425" при

комнатной температуре при скорости деформации 200 мм·мин⁻¹.

Термостабильность вулканизатов на основе смесей эластомеров изучали на дериватографе марки Q-1500D фирмы МОМ, Венгрия. Испытания проведены в атмосфе-

ре воздуха в динамическом режиме при нагреве образца 5 град·мин⁻¹ от 20 до 500°C, навески 100 мг, чувствительности каналов ДТА-250мкВ, ТГ-100, ДТГ-1 мВ.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Проведены исследования физикомеханических и технологических свойств наполненных и ненаполненных, а также модифицированных вулканизатов на основе смесей эластомеров. Проведенные исследования показали, что введение модификатора в состав ненаполненных бинарных смесей эластомеров СКН/СКИ и БИИК/СКИ не способствует получению вулканизатов с улучшенными свойствами. Введение модификатора в состав наполненных композиций приводит к улучшению свойств вулканизатов при смешении композиций в течение 7 мин. как для системы СКН/СКИ/Т.У., так и для БИИК/СКИ/Т.У. Дальнейшее увеличение времени смешения (10, 15 мин.) мало влияет на свойства вулканизатов. Состав и свойства композиций бинарных смесей эластомеров (среднее из 5 измерений) приведены в таблице 1.

Табл. 1. Состав и свойства композиций на основе бинарных смесей каучуков

Композиция	Прочность при растя-жении, МПа	Относитель-	Нап	ряжение	Время вул-		
		ное удлинение	удлинении, МПа			канизации	
		при разрыве,	100%	200%	300%	при 145°C,	
		%				МИН	
СКН/СКИ	5.1	778.8	0.6	0.8	1.1	40.7	
СКН/СКИ/ТХУК	2.5	306.1	0.8	1.2	1.8	30.5	
СКН/СКИ/Т.У.	8.2	338.1	2.8	4.9	7.4	27.0	
СКН/СКИ/ТХУК/Т.У.	9.6	186.8	5.0	0	0	26.0	
БИИК/СКИ	2.3	223.7	1.0	1.9	0	14.5	
БИИК/СКИ/ТХУК	2.6	172	1.7	3.1	0	27.5	
БИИК/СКИ/Т.У.	10.2	178	6.3	0	0	8.0	
БИИК/СКИ/ТХУК/Т.У.	12.1	218.4	6.5	11.3	0	20	

Как видно из данных табл. 1, введение ТХУК в состав наполненной композиции СКН/СКИ приводит к увеличению прочности (σ_p) в 1.17 раз, однако уменьшает относительное удлинение при разрыве (ϵ) в 1.7 раза, напряжение при 100%-ном удлинении M_{100} возрастает с 2.8 до 5.0 МПа, а M_{200} и M_{300} уменьшаются: M_{200} – с 4.9 МПа до 0, а M_{300} – с 7.4 также до 0.

Введение ТХУК в состав наполненной композиции БИИК/СКИ приводит к увеличению σ_p в 1.17 раз, ϵ – в 1.22 раза, величина M_{100} почти не изменяется, M_{200}

возрастает до 11.3 МПа, а M_{300} во всех случаях равно нулю.

Известно, что в процессе релаксации вулканизатов карбоксилатных каучуков, полученных в присутствии оксидов металлов, напряжение уменьшается до нуля. При этом степень сшивания не изменяется, т.е. падение напряжения связано не с распадом вулканизационных структур, а с их перегруппировкой по обменному механизму, т.е. происходит микрогетерогенное распределение поперечных связей [10]. Вероятно, перегруппировка связей облегчается сосед-

ством ионов металла, находящихся на поверхности частиц вулканизующего оксида.

Термостабильность полученных вулканизатов оценивалась по энергии активации (E_a) распада термоокислительной деструкции, рассчитанной по методике [11] в температурном интервале 280÷340°C, а также по величине потери массы.

Полученные в результате дериватографических исследований данные для вулканизатов наполненных и ненаполненных, а также модифицированных бинарных смесей эластомеров приведены в таблице 2.

Табл. 2. Термостабильность композиций на основе бинарных смесей каучуков

<u> </u>								
Состав композиций	Е _а , кДж·моль ⁻¹	Период полураспада,	Потеря массы, %					
			Температура, °С					
		$\tau_{1/2}$, МИН	200	250	300	350	400	
СКН/СКИ	142.87	60.3	5.0	6.0	8.0	25.0	_	
СКН/СКИ/ТХУК	181.6	66.8	0.5	2.5	4.0	17.0	45.0	
СКН/СКИ/Т.У.	186.27	76.8	0	1.0	5.8	18.0	47.0	
СКН/СКИ/ТХУК/Т.У.	204.2	78.7	0	2.0	4.0	15.0	35.0	
БИИК/СКИ	137.5	60.8	0.7	2.7	10.0	50.0	_	
БИИК/СКИ/ТХУК	216.5	60.9	0.5	3.5	11.0	50.0	_	
БИИК/СКИ/Т.У.	179.1	68.1	0	0	4.0	33.0	_	
БИИК/СКИ/ТХУК/Т.У.	233.8	71.6	0	1.5	4.5	11.0	32.0	

Как видно из данных табл. 2, бинарные смеси каучуков имеют достаточно высокую термостабильность, потери массы наблюдаются при температуре ≥ 200 °C. ТХУК в смесь Введение Т.У. или СКН/СКИ способствует увеличению Е_а, а потери массы происходят при температуре \geq 300°С и достигают 17-18% при t = 350°С. Совместное введение в смесь Т.У. и ТХУК способствует увеличению Еа до 204.2 кДж·моль⁻¹, а потери массы не очень велики и достигают 4% при 300°C, а при 400°C – 35%, в то время как исходная смесь резко деструктирует. Период полураспада ($\tau_{1/2}$) для исходной бинарной смеси равен 60.3 мин., а для наполненной модифицированной смеси в 1.3 раза выше.

Введение Т.У. в смесь БИИК/СКИ способствует увеличению E_a с 137.5 до 179.1 кДж·моль⁻¹, а потери массы наблюдаются при $t > 300^{\circ}$ С и достигают 33% при $t = 350^{\circ}$ С. Введение ТХУК в смесь БИИК/СКИ способствует увеличению величины E_a до 216.5 кДж·моль⁻¹, однако период полураспада и потеря массы находятся на уровне значений этих показателей для

исходной смеси. Совместное введение в смесь Т.У. и ТХУК приводит к увеличению E_a до 233 кДж·моль⁻¹ и уменьшению величины потери массы, которая достигает 4.5% при 300°C, 11% при 350°C и 32% при 400°C.

Исследования показали, что совместное введение Т.У. и ТХУК в состав бинарных смесей полярных каучуков с полиизопреном способствует увеличению E_a и уменьшению величины потери массы, что характеризует увеличение термостабильности композиций и, следовательно, увеличивает температурные пределы использования полученных композиционных материалов.

Формирование вулканизационной структуры отдельных видов эластомеров, а также, в частности, карбоксильных каучуков при металлоксидной вулканизации, которые представляют собой однофазные системы, в достаточной мере изучены. Установлено, что карбоксильные группы каучука, реагируя с оксидами, превращаются в соли, которые, вследствие плохой растворимости в эластомере, образуют микрооб-

ласти или остаются связанными с частицами оксидов в полимере в результате сорбционных или ионных взаимодействий. Таким образом, в процессе вулканизации создавалась совокупность чередующихся в пространстве более прочных и более слабых "микрообъемов" вулканизатов, приводящая к облегчению релаксации напряжений в процессе деформации или при ее формировании.

Несмотря на наличие многочисленных работ, посвященных вулканизатам с ионными связями, число работ по структуре вулканизационной сетки этих резин крайне ограничено [11, 12]. Влияние состава двухфазных смесей эластомеров на свойства полученных композиций исследовалось многими авторами [1-3]. Однако закономерности формирования вулканизационной структуры и прочностных характеристик для бинарных смесей полимеров изучены мало.

Ранее нами были проведены исследования структуры и свойств бинарных смесей эластомеров [13, 14]. В результате проведенных исследований показано, что бинарные смеси полимеров являются двухфазной системой, в связи с чем их свойства резко отличаются от свойств индивидуальных эластомеров. Исследование свойств вулканизатов модифицированных бинарных смесей эластомеров показало, что в формировании вулканизационной структуры исследуемых композиций принимают участие функциональные группы модифицированных каучуков. Введение в состав бинарной смеси эластомеров модифицирующего агента (ТХУК) способствует тому, что в процессе вулканизации в системе создается комбинация прочных и слабых (солевых) лабильных вулканизационных связей. Первые обеспечивают сохранение целостности пространственной сетки вулканизата при больших деформациях, тогда как слабые и легко перегруппировывающиеся связи способствуют релаксации локальных перенапряжений [10].

Высокую прочность и термостабильность вулканизатов модифицированных бинарных смесей каучуков можно связать с ионным характером (солевые связи) возникающих вулканизационных связей, т.к. сшивание по карбоксильным группам с образованием ковалентных связей приводит к получению вулканизатов с низкими физико-механическими свойствами. Это возможно, если солевые связи сохраняют контакт с поверхностью нерастворившихся в каучуке частиц оксида, т.е. если происходит гетерогенная реакция, а поперечные связи избирательно концентрируются у поверхности оксида.

Рассматривая вулканизацию как гомогенный процесс, а распределение поперечных связей статистически, трудно допустить возможность ассоциации поперечных связей. Однако ее легко представить, приняв, что формирование вулканизационной структуры происходит, как и при металлоксидной вулканизации карбоксилатных каучуков, в результате гетерогенной реакции. Иными словами, ассоциация поперечных связей возможна при условии, что поперечные связи образуются вследствие реакции каучука с вулканизующим агентом на поверхности частиц последнего [11].

Полученные результаты исследований свидетельствуют о протекании вулканизации для модифицированных бинарных смесей полярных каучуков с полиизопреном как гетерогенной реакции. Получение композиций с улучшенным комплексом свойств позволяет расширить сферы использования полученных материалов при изготовлении резин различного назначения.

ЛИТЕРАТУРА

- 1. Помогайло А.Д. // Успехи химии. 2002. Т. 71. № 1. С. 5-38.
- 2. Кулезнев В.Н. Смеси полимеров. М.: Химия. 1980. 304 с.
- 3. Менсон Дж., Сперлинг Л. Полимерные смеси и композиты. / Под ред. Ю.К.Годовского. М.: Химия. 1979. 440 с.

- 4. Евстратов В.А., Лыкин А.С., Шварц А.Г., Кавун С.М. // Высокомолек. соед. 1979. А. Т. XXI. № 11. С. 2415-2423.
- 5. Botros S.H., Moustafa A.F., Ibrahim S.A. // J. Appl. Polym. Sci. 2006. V.99. N4. P. 1559-1567.
- 6. Lipinska P., Zaborski M. // Prztm. Chem. 2006. V. 85. N 8-9. P. 938-941.
- 7. Мамедов Ш.М. // Каучук и резина. 2005. № 6. С. 14-16.
- 8. Ganter M., Gronski W., Reichert P. et al. // GAK: Gummi, Fasern, Kunstst. 2003. b. 56. N 7. S. 444-454.
- 9. Курбанова Н.И. // ЖПХ. 2005. Т.78.

- № 8. C. 1379-1383.
- 10. Догадкин Б.А. Химия эластомеров. М.: Химия. 1972. 392 с.
- 11. Практикум по химии и физике полимеров / Под ред. В.Ф.Куренкова М.: Химия. 1990. 299 с.
- 12. Донцов А.А. Процессы структурирования эластомеров. М.: Химия. 1978. 288 с. 13. Борисова Т.А., Зимин Э.В., Рейх В.Н., Скрипова Л.С. // Высокомолек. соед. 1973. Б. Т. 15. № 7. С. 487-491.
- 14. Курбанова Н.И. // ЖПХ. 2004. Т. 77. № 6. С. 1041-1043.

POLYAR KAUÇUKLARININ POLİİZOPRENLƏ BİNAR QARIŞIQLARIN ƏSASINDA ALINAN VULKANİZATLARIN XASSƏLƏRİNƏ MODİFİKASİYANIN TƏSİRİ

N.İ.Qurbanova, N.M.Seyidov

Polyar kauçuklarının (butadiyen-nitril və bromizobutilenizopren) poliizoprenlə binar qarışıqların əsasında alınan vulkanizatlarının möhkəmlik və termiki xassələrinə modifikaiyaedici agentin – trixlorsirkə turşusunun təsiri tədqiq olunmuşdur.

THE INFLUENCE OF MODIFICATION ON PROPERTIES OF VULCANIZATES OF BINARY MIXTURES OF POLAR RUBBERS WITH POLYISOPRENE

N.I.Kurbanova, N.M.Seidov

The influence of modifying agent (trichloroacetic acid) on strength and thermic properties of vulcanizates on the basis of binary mixtures of polar rubbers (butadiene-nitrile and bromisobutylene-isoprene) with polyisoprene has been analysed.