UDC 541.64:546.791:547.56

PURIFICATION OF WATER FROM URANYL-IONS BY NEW SORBENT OF CARBOXYLATE TYPE

^aA.M. Maharramov, ^aM.R. Bairamov, ^aG.M. Askarova, ^bJ.A. Naghiyev, ^aM.A. Agayeva, ^aSh.J. Guliyeva, ^aG.M. Hasanova

^aBaku State University

Z.Xalilov str., 23, Baku AZ 1148, Azerbaijan Republic; e-mail: gull.askar@mail.ru

^bNational Nuclear Research Centre of Azerbaijan

Inshaatchilar ave. 4, Baku, AZ 1073

Received 02.05.2018

The hydrolyzed ternary copolymer of styrene, maleic anhydride and 1,3-bis(2-propenylphenoxy)-propane was studied as sorbent for extraction of uranyl-ions out of aqueous systems. The influence of pH medium, concentration of uranyl-ions, quantity of sorbent, duration of sorption and other factors on main indices of the sorption process was analyzed. The analysis of isotherms of sorption of uranyl-ions was performed through the use of Langmuir and Freundlich's equations. The possibility of using the copolymer both in concentrated and diluted solutions established.

Keywords: cross-linked copolymers, isotherms of sorption, regeneration, sorption, uranyl-ions

INTRODUCTION

As is known, the development of effective methods of purification of aqueous systems from ions of heavy metals, radionuclides and other harmful substances is one of the priority directions of the chemical science [1-3].

In spite of the fact that recently there have been proposed the various sorption methods of purification from above-mentioned toxicants, an emphasis is laid on making new materials with high functional properties, especially as regards sorbents of complex-forming type which can be easily regenerated and reused [4].

Radionuclides in aqueous solutions are usually in the hydrolyzed form which largely accounts for their behavior in the sorption processes, ion exchange, extraction, etc. In the compounds, the uranium shows a valence state (from 2 to 6). However, in the aqueous medium, U(VI) is the most stable in the form of UO_2^{2+} -ions to create mononuclear and polynuclear hydroxocomplexes [5].

ISSN 2221-8688

The works [6] revealed that for effective binding of UO₂²⁺-ions from aqueous solutions it'd be appropriate to use the synthetic sorbent-hydrolized cross-linked copolymer of styrene, maleic anhydride and 1,3-bis-(2-isopropenylphenoxy)-butane developed by us.

The paper deals with the synthesis of cross-linked copolymer of styrene, maleic anhydride and 1,3-bis-(2-propenylphenoxy) propane to examine them as sorbent for purification of aqueous solutions from uranyl salts.

EXPERIMENTAL PART

The radical ternary copolymerization reaction of styrene, maleic anhydride and 1,3-bis-(2-propenylphenoxy)-propane (at their ratio 1:2:0,2 mol) was analyzed with a view of preparing a new sorbent with cross-linked structure. The last one was synthesized

(Williamson reaction) through the interaction of 2-propenylphenol with 1,3-dibromopropane (in the presence of alcohol solution of KOH and promoter KY). The copolymerization was carried out in a medium of solvating solvent (200% of dioxane). As a template there was

used a linear copolymer of styrene with maleic anhydride (4% per taken reagents).

The copolymerization process was carried out in the presence of initiator – dinitrile of azoizobutyric acid (1% per mixture of monomers), at temperature 80°C during 10 hours.

In the end of template synthesis aimed at separating a pore agent (linear copolymer of styrene with maleic anhydride) from crosslinked copolymer, it was extracted (at the Soxhlet apparatus) first by acetone, then by toluene. The cross-linked copolymers were dried up at temperature 40-50°C for 2 hours in the vacuum box with yield ~95% (thereof).

The last ones were further treated by hot water for 2 hours with the aim of opening anhydride rings and preparing a sorbent with carboxyl groups in their structure:

To reveal the possibility of use of last one as sorbent for extraction of uranium compounds, comprehensive laboratory explorations in static conditions were carried on model systems consisting of solutions with sertain concentration of uranyl sulfate in distilled water. To regulate pH medium, ammonia acetate solutions through mixing corresponding volumes of 0,1M CH₃COOH with 0,1M NH₃ were used. Also, fixanal HCl was used.

An estimation of sorption properties was carried out by determination of isotope 238 U activity in aqueous phase (before and after sorption) by γ -spectrometer HPGe with germanium detector (made in USA).

The influence of UO₂²⁺-ions concentration of pH, quantity of sorbent, endurance time and other parameters on

degree of their sorption (R, %) and sorption capacity of sorbent (SCS, mg/g) was analyzed.

Note that respective experiments were carried out as follows: some quantities of copolymer and aqueous solution of uranylsulfate of a given concentration are loaded into a teflon cup with capacity of 100 ml. Then, 10 ml of 0.1M buffer solution was added to the mixture and its volume brought to 50 ml (a dilution with distilled water). The system is kept at a room temperature for some time, after which in the aqueous solution it is determined a content of UO22+ ions. Based on the obtained data R and SCS are calculated. The equilibrium of sorption of uranyl ions on the synthesized sorbent was examined at 293 K under static conditions. The equilibrium concentration of the uranyl ion have also been determined by γ -spectrometer.

RESULTS AND DISCUSSION

Table 1 shows the results of research into the influence of pH medium on R and SCS (duration of endurance – 24 hours, quantity of sorbent – 20 mg). The

concentration of UO_2^{2+} -ions in the initial solutions in these series made up 236 mg/l and the activity - ^{235}U Bq/l.

	Activity of isotope	Concentration of UO_2^{2+} -		
pH of solution	²³⁵ U after sorption,	ions in solution after	R, %	SCS, mg/g
	Bq/l	sorption, mg/l		
1.0	120	236.0	0	0
2.0	109	214.4	9.2	54.1
3.0	104	204.5	13.3	79.7
3.85	89	175.0	25.8	152.4
4.8	65	127.8	45.8	270.4
5.7	31	61.4	74.0	236.6
6.2	30	57.2	75.8	436.9
8.0	32	62.9	73.3	432.7
9.0	92	181.5	23.1	136.2
10	120	236.0	0	0
11	115	226.2	4.2	24.6
12	120	236.0	0	0
13	117	230.1	2.5	14.8
14	118	232.1	1.7	9.8

Table 1. Influence of pH of aqueous solution on R and SCS values

In an effort to find the possibility of using the copolymer for UO_2^{2+} -ions concentration from diluted solutions, we have carried out further experiments where initial concentrations alternated in a wider range (2.4

mg/l to 778.8 mg/l). These studies were also carried out under static conditions at a room temperature and an optimum value of pH \sim 6. Duration of sorption was 24 hours. The obtained results are presented in Table 2.

Activity of isotope ²³⁵ U,		Conc. of UO ₂ ²⁺			
Bq/l		m	R,%	SCS, mg/g	
before sorption after sorption		before sorption	after sorption		
1.2	0.11	2.4	0.2	90.8	2.7
2.4	0.19	4.7	0.4	92.1	5.4
3.6	0.44	7.1	0.9	87.8	7.8
14.4	1.13	28.3	2.2	92.2	32.6
28.28	2.9	56.6	5.7	89.9	63.7
43.2	4.2	85.0	8.3	90.3	95.9
86.4	6.8	189.9	13.0	92.4	196.2
120.0	12.1	236.0	23.8	90.0	265.3
180.0	45.5	354.0	88.7	74.9	331.6
216.0	62.6	424.8	123.1	71.0	377.1
252.0	79.6	495.6	156.1	68.4	423.8
288.0	100.1	566.4	196.9	65.2	461.9
324.0	136.2	637.2	256.9	58.3	464.1
360.0	166.3	708.0	327.1	53.8	476.2
396.0	199.5	778.8	392.4	49.6	483.1

Table 2. Influence of UO_2^{2+} -ions in the solution on R and SCS

According to Table 2, the copolymer has high sorption properties in relation to UO_2^{2+} ions both in concentrated and diluted aqueous

solutions. A degree of extraction of $\rm UO_2^{2^+}$ ions from concentrated solution (with content $\sim 190~\rm mg/l~\rm UO_2^{2^+}$ -ions) is 92.4% where SCS is

196.2 mg/g. Further increase of the ions concentration in the initial solution makes up to 236 mg/l and R to 90%, and SCS – to 265.3 mg/g. When used strongly concentrated solutions (content 708.0 and 778.8 mg/l UO_2^{2+} -ions), R value averages to ~50%.

To calculate the sorption constants, the well-known Freundlich and Langmuir equations were used.

An estimation of the distribution of uranyl-ions on heterogeneous sorption surfaces can be described by empirical Freundlich equation

$$q_e = K_F + C_c^n (1)$$

where K_F - Freundlich constant characterizing the adsorption capacity

n − surface heterogeneity index; $0 \le n \le 1$

In $n \to 1$ a heterogeneity decreases and in n = 1, the Freundlich equation passes over to linear isotherm.

Table 3 presents the calculated and n constants were revealed from the parameters of the Freundlich sorption. The $K_{\rm F}$ linearized form of the equation

$$\log q_e = \log K_F + \frac{1}{n} \log C_e$$

where C_e – concentration of uranyl ions in the solution after sorption

354.0

424.8

495.6

566.4

637.2

708.0

778.8

qe- quantity of uranyl ions relating to sorbent, mg/g

n – sorbent heterogeneity index

K_F – sorption capacity constant determined experimentally

Activity Activity Concentration Concentration SCS, ²³⁵U before ²³⁵U after of uranyl-ions of uranyl-ions log C_e $\log q_e$ q_e, after sorption, sorption, sorption, before sorption, mq/1 A_0 , Bq/lA, Bq/l C_e, mg/l C_0 , mg/l 2.7 1.2 0.11 2.4 0.2 0 0.081 2.4 0.19 4.7 0.4 0 5.4 0.069 3.6 0.44 7.1 0.9 0 7.8 0.111 2.2 0.347 32.6 14.4 1.13 28.3 0.068 28.8 2.9 56.6 5.7 0.756 63.7 0.090 43.2 4.2 85.0 8.3 0.917 95.9 0.086 169.9 13.0 86.4 6.6 1.113 196.2 0.066 120.0 12.1 236.0 23.8 1.377 265.3 0.090

88.7

123.1

156.5

196.9

265.9

327.1

392.4

1.948

2.090

2.195

2.294

2.425

2.515

2.594

331.6

377.1

423.8

461.9

464.1

476.2

483.1

0.267

0.326

0.369

0.426

0.573

0.687

0.812

Table 3. Parameters of Freundlich sorption

45.1

62.6

79.6

100.1

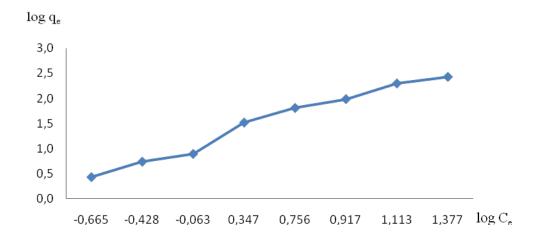
135.2

166.3

199.5

180.0

216.0


252.0

288.0

324.0

360.0

396.0

Fig. 1. Freundlich isotherm

To characterize the sorption process of built. The sorption isotherm constants were uranyl-ions, the Langmuir isotherm was also calculated by the following equations:

$$\frac{C_e}{q_e} = \frac{1}{K_L} + \frac{a_L}{K_L} Ce \qquad q_e = \frac{Q_{\text{max}} a_L C_e}{1 + a_L C_e}$$

C_e - concentration of uranyl-ions in the solution after sorption, mg/l

qe – quantity of connected sorbent of uranium, mg/g

 K_L – sorption constant 1/g

 $a_L - constant \ characterizing \ the \ sorption \ energy \ l/mg$

 Q_{max} – maximum sorption capacity of the sorbent, mg/g

The same Table presents the Freundlich isotherm constant.

The Langmuir isotherm is shown in Fig. 2.

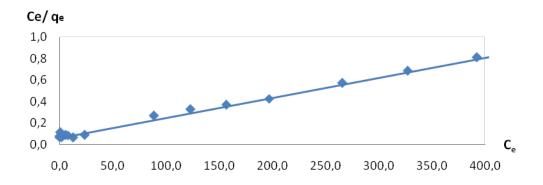


Fig. 2. Langmuir isotherm

An intercept at the intersection of a straight line with ordinate axis corresponds to $1 \, / \, KL$.

According to the formula:

$$R_L = \frac{1}{1 + bC_0}$$

Where $b(a_L)$ – Langmuir constant

 C_0 – initial concentration of uranyl-ions in the solution, mg/l; were calculated R_L of Langmuir isotherm.

It should be noted that if this constant will take the values in the range $0 < R_L < 1$, the

sorption process can be considered as profitable, at $R_L > 1$ – unprofitable and in $R_L = 0$ – irreversible). The Freundlich and Lanqmuir isotherm constants are shown in Table 4.

Corbont	Freundlich isotherm constants			Lanqmuir isotherm constants			
Sorbent	n	K_{F}	R^2	K _L , l/g	a _L , l/mg	R_{L}	$Q_{\text{max}},$ mq/g
Carboxylate containing copolymer	1.0026	12.31	0.989	13.61	0.0259	0.047	483.1

Table 4. Freundlich and Lanqmuir isotherm constants

The data of Table 4 shows that the sorption process can be considered as profitable (RL = 0,047); maximum value of SCS (483.1 mg/g) = C_0 is reached at 778.8 mg/l.

To find the possibility of reusing the

copolymer, the experiments on its regeneration through the use of hydrochloric acid of various concentrations were carried out. The process proceeded at room temperature under static conditions for 24 hours. The results of these experiments are presented in Table 5.

Acid concentration, M	Activity of isotope ²³⁵ U in aqueous solution, Bk/l	Concentration UO ₂ ²⁺ -ions in aqueous solution (after desorption), mg/l	Degree of sorption, %
0	1.25	2.46	1.2
0.00051	10.9	21.4	9.2
0.00075	19.5	38.35	16.5
0.003	28.5	56.25	24.2
0.005	39.5	77.68	33.5
0.001	56.7	111.41	48.0
0.05	75.4	148.29	63.9
0.1	85.6	168.35	72.5
0.3	102.9	202.37	87.2
0.75	110.2	216.73	93.4
1.5	114.4	225.0	96.9
2.0	112.4	221.05	95.3

Table 5. Results of desorption of UO_2^{2+} -ions with hydrochloric acid (HCl)

As is seen from Table, when using diluted solutions of hydrochloric acid, a degree of desorption of UO_2^{2+} -ions doesn't exceed 24,2%.

When using an acid in the concentration

(from 0.1 to 0.3 M), a degree of desorption of uranyl-ions is 72.5 and 87.2%, respectively. A maximum degree of desorption of $UO_2^{2^+}$ -ions (~ 97%) is attained when using an acid of 1M concentration.

CONCLUSION

Thus, the results of the analysis make it possible to recommend the cross-linked copolymer obtained by radical copolymerization of styrene, maleic anhydride

and new cross-linking comonomer-1,3-bis-(propenylphenoxy)-propane as sorbent for effective purification of aqueous solutions from uranium salts.

REFERENCES

- Vlasova N.N., Oboronina Je.N., Grigorieva O.Ju., Voronkov M.G. Organosilicon Ion-Exchange and Complexing Adsorbents. *Russian Chem.Rev.* 2013, vol. 82, no.5, pp. 449-464
- 2. Maharramov A.M., Bairamov M.R., Agayeva M.A. et al. Akenylphenols: preparation, transformation and applications. *Russian Chemical Reviews*. 2015, vol. 84, no. 11, pp. 1258-1278
- 3. Maharramov A.M., Bairamov M.R., Garibov A.A. et al. The analysis of nitro-containing cross-linked copolymers of maleic anhydride and styrene as chelating sorbents for extracting uranyl-ions from water systems. *Journal of Environmental Analytical Chemistry*. 2017, vol.4, issue 3, pp. 1-4. Doi:10.41722380-2391.1000205
- 4. Perlova O.V., Sazanova V.F., Perlova N.A. and Yaroshenko N.A. Kinetics of Sorption of Uranium(VI) Compounds

- with Zirconium–Silica Nanosorbents. *Russian Journal of Physical Chemistry A*. 2014, vol. 88, no. 6, pp. 1012-1019. DOI: 10.1134/S0036024414060223.
- 5. Magerramov A.M., Bairamov M.R., Garibov A.A. Investigation of the maleic anhydride, terpolymer of styrene and 1,4-di (4-isopropenylphenoxy) butane as a sorbent for extraction of UO_2^{2+} ions from aqueous systems. Zhurnal Prikladnoi Khimii -The Russian Journal of Applied Chemistry. 2011, vol. 84, no. 1, pp. 151-155.
- 6. Magerramov A.M., Bairamov M.R., Allahverdieva M.G. Investigation of sulphocathionite based on styrene copolymer 1.4-di (4and isopropenylphenoxy) butane sorbent for the recovery of uranyl ions from aqueous solutions. Azerbaijan **Technical** University. Scientific proceedings. Fundamental sciences. 2010, vol. IX(35), no. 3, pp. 110-112.

ОЧИСТКА ВОДЫ ОТ УРАНИЛ-ИОНОВ С ПОМОЩЬЮ НОВОГО СОРБЕНТА КАРБОКСИЛАТНОГО ТИПА

^aА.М. Магеррамов, ^aГ.М. Аскарова, ^aМ.Р. Байрамов, ^bДж.А. Нагиев, ^aМ.А. Агаева, ^aШ.Дж. Гулиева, ^aГ.М. Гасанова

Бакинский государственный университет AZ 1148 Баку, ул. 3.Халилова, 23; e-mail: gull.askar@mail.ru Национальный центр ядерных исследований AZ 1073, Баку, пр. Иншаатчылар, 4

Гидролизованный тройной сополимер стирола, малеинового ангидрида и 1,3-бис-(пропенилфенокси)пропана исследован в качестве сорбента для извлечения уранил-ионов из водных систем. Изучено влияние pH среды, концентрации уранил-ионов, количества сорбента, продолжительности сорбции и др. факторов на основные показатели процесса сорбции. С применением уравнений Ленгмюра и Фрейндлиха проведен анализ изотерм сорбции уранил-ионов. Установлена возможность использования сополимера как в концентрированных, так и разбавленных растворах.

Ключевые слова: сшитые полимеры, изотермы собции, уранил-ионы, регенерация

SULU SİSTEMLƏRİN URANİL-İONLARDAN YENİ KARBOKSİLAT TİPLİ SORBENT VASİTƏSİ İLƏ TƏMİZLƏNMƏSİ

^aA.M. Məhərrəmov, ^aM.R. Bayramov, ^a G.M. Əsgərova , ^bC.A. Nağıyev, ^aM.A. Ağayeva, ^aŞ.C. Quliyeva, ^a G.M. Həsənova

^aBakı Dövlət Universiteti AZ 1148 Bakı, Z.Xəlilov küç., 23; e-mail: gull.askar@mail.ru ^bMilli Nüvə Tədqiqatları Mərkəzi AZ 1073, Bakı, İnşaatçılat pr., 4

Sulu sistemlərindən uranil-ionlarının təmizlənməsi üçün hidroliz olunmuş stirol, malein anhidridi, 1,3-bis-(propenilfenoksi)propan əsasında alınmış üçlü sopolimerindən sorbent kimi istifadə olunmuşdur. Sorbsiya prosesinin əsas göstəricilərinə mühitin pH-i, uranil-ionlarının qatılığı, sorbentin miqdarı, sorbsiya vaxtı və s. faktorların təsiri öyrənilmişdir. Lenqmür və Freyndlix tənliylərindən istifadə edərək uranil-ionlarının sorbsiya izotermlərinin təhlili aparılmışdır. Sopolimerin qatı və duru məhlullarda istifadəsinin mümkünlüyü təsdiq edilmişdir. Açar sözlər: tikili polimer, sorbsiya, uranil-ionları, sorbsiya izotermləri, regenerasiya