УДК 547:544.424

СИНТЕЗ ПРОИЗВОДНЫХ ЭТИЛБЕНЗОЛА НА ОСНОВЕ ПРЕВРАЩЕНИЙ 1-ХЛОР-1-ФЕНИЛЭТАНА

А.М.Магеррамов, Г.Ш.Дурускари, Х.А.Гаразаде, А.Г.Лютфалиев, М.Н.Магеррамов

Бакинский государственный университет AZ 1148 Баку, ул. 3.Халилова, 23; e-mail: <u>xatire-qarazade@rambler.ru</u>

Изучены реакции 1-хлор-1-фенилэтана с различными реагентами, отличающимися нуклеофильностью и экранированностью реакционных центров, и выявлены особенности протекания реакций в зависимости от условий реакции и структурных факторов.

Ключевые слова: бензилхлорид, 1-хлор-1-фенилэтан, бензиламин, пиперидин, морфолин, калиевые соли пропионовой кислоты, диэтиламин, анилин.

Известно, что в молекуле бензилхлорида атом хлора легко подвергается нуклеофильному замещению из-за подвижменьшей экранированности последнего и стабильности бензильного карбкатиона. Поэтому бензилхлорид широко используется в бензилировании органических соединений. Исходя из этого, в продолжение наших прежних работ [1-5] представлял интерес изучить возможность получения производных этилбензола на основе превращений 1-хлор-1-фенилэтана, молекуле которого атом хлора в определенной степени экранирован метильной группой.

В этой связи нами изучены реакции 1-хлор-1-фенилэтана с нижеследующими реагентами, отличающимися нуклеофильностью и экранированностью реакционных центров: анилин, диэтиламин, пиперидин, морфолин, бензиламин, фенолят натрия, калиевые соли пропионовой кислоты и нефтяных кислот фракции 120-130 °C/2 мм. Установлено, что за исключением анилина и диэтиламина указанные реагенты вступают в реакцию с 1-хлор-1-фенилэтаном, а выход продуктов замещения значительно зависит от ряда факторов.

Из схемы видно, что диэтиламин и анилин не вступают в реакцию вообще, а в более жестких условиях последний дегидрохлорируется в стирол. Этот факт был объяснен пространственными факторами, создаваемыми объемистыми фенильным и диэтиламинным группами.

Следует также отметить, что в отличие от анилина в идентичных условиях бензиламин, пиперидин и морфолин доста-

точно эффективно вступают в реакцию, что можно объяснить высокой нуклеофильностью и меньшей экранированностью реакционных центров.

Далее изучено влияние некоторых факторов (температура, мольное соотношение реагирующих компонентов, продолжительность опытов) на ход реакции. Полученные результаты показаны в табл. 1

Табл. 1. Влияние некоторых факторов на ход реакции 1-хлор-1-фенилэтана с различными реагентами

Реагенты	Мол.соотн.	T-pa, ⁰ C	Продолжитель-	Выход	
	1-хлор-1-фенилэтана		ность реакции,	продуктов	
	и реагента		Ч	реакции, %	
CH₃CH₂COOK	1:1,5	140	3	64.0	
CH ₃ CH ₂ COOK	1:1,5	140	10	80.0	
RCOOK	1:1,5	140	10	64.5	
NH	1:3	100	10	50.0	
NH	1:3	80-85	10	46.0	
NH	1:10	80-85	3	64.0	
NH	1:3	80-85	3	27.5	
O NH	1:3	80-85	10	44.5	
O NH	1:3	80-85	3	26.3	
-CH ₂ -NH ₂	1:3	80-85	5	33.4	
-CH ₂ -NH ₂	1:3	80-85	10	50.0	
-CH ₂ -NH ₂	1:1,5	80-85	10	40.0	
ONa	1:1,5	120	10	43.0	
ONa	1:1,5	140	10	52.0	

Из данных таблицы 1 следует, что в ряде случаев выход продуктов замещения значительно зависит от изменения того или иного фактора. Так, например, в случае реакции с пиперидином и морфолином при прочих равных условиях изменение продолжительности реакции от 3 до 10 ч приводит к повышению выхода продуктов

замещения от 26% до 50%. При реакции с этими же реагентами изменение мольного соотношения 1-хлор-1-фенилэтана к реагентам от 1:3 до 1:10 даже при относительно низкой температуре и уменьшении продолжительности реакции от 10 до 3 ч выход продукта замещения повышается от 50% до 64 %. Из таблицы 1

также видно, что при идентичных условиях по сравнению с фенолятом натрия калиевая соль пропионовой кислоты проявляет высокую реакционную способность: с калиевой солью выход продукта замещения составляет 80% против 52% с фенолятом натрия. Этот факт, вероятно, объясняется большей нуклеофильностью карбоксилат-

ного аниона по сравнению с анионом фенолята.

Физико-химические константы синтезированных соединений показаны в табл. 2. Структуры синтезированных соединений изучены методом ЯМР спектроскопии.

Таблица 2. Физико-химические константы синтезированных соединений

Соединение	Т-ра кипения, ⁰ С	n_{D}^{20}	d_4^{20}	MR _{эксп}	$MR_{\text{выч.}}$
CH₃ CHN	72-73/1мм	1.5233	0.9536	60.57	60.37
CH ₃ CHN O	105-106/5мм	1.5274	1.0139	57.95	57.02
CH ₃ CH-O-C-CH ₂ CH ₃ Ö	65-66/1мм	1.4862	1.0221	50.017	50.884
CH₃ CH-O-C-R O	130-142/1мм	1.4734	0.9665	-	-
CH ₃ H ₂ CH-NH-C	140-141/2мм	1.5254	1.0208	67.86	67.36
CH ₃ CH-O-	100-101/1мм	1.5848	1.0655	61.7	61.3

ЛИТЕРАТУРА

1. 3.Э.Байрамова, А.М.Магеррамов, М.Н.Магеррамов, Х.А.Гаразаде. Синтез и ингибирующие свойства некоторых азотсодержащих производных нефтяных

кислот. //Azərbaycan Neft Təsərrüfatı. 2012. №9. s.39-42.

2. А.М.Магеррамов, П.Ш.Мамедова, X.А.Гаразаде, З.Э.Байрамова. Синтез и

- исследование некоторых производных нефтяных кислот в качестве антимикробных присадок к смазочно-охлаждающим жидкостям. // Azərbaycan Neft Təsərrüfatı. 2013. №4. s.39-42.
- 3. А.М.Магеррамов, М.Н.Магеррамов, И.Г.Мамедов, Х.А.Гаразаде. Об особенностях карбоновых кислот с бифункциональными соединениями. // Kimya problemləri jurnalı. 2012. №3. s.387-389.
- 4. A.M.Məhərrəmov, G.Ş.Dürüskari, X.A.Qarazadə, A.H.Lütfəliyev. Mono-, di- və trietilbenzolların xlorlaşması. // Bakı Universitetinin xəbərləri. 2011. №1. s.38-41.
- 5. А.М.Магеррамов, Г.Ш.Дурускари, Х.А.Гаразаде, А.Г.Лютфалиев, М.Н.Магеррамов. Синтез некоторых азотсодержащих производных стирола. // Известия ВУЗов. Химия и химическая технология. 2012. Том 55. Вып. 7. стр.13-15.

1-XLOR-1-FENİLETANIN ÇEVRİLMƏLƏRİ ƏSASINDA ETİLBENZOL TÖRƏMƏLƏRİNİN SİNTEZİ

G.Ş.Dürüskari, X.A.Qarazadə, A.M.Məhərrəmov, M.N.Məhərrəmov, A.H.Lütfəliyev

1-Xlor-1-feniletanın anilin, dietilamin, piperidin, morfolin, benzilamin, natrium fenolyat, propion turşusunun və neft turşularının 120-130⁰ C/2 mm fraksiyası ilə reaksiyası tədqiq edilmiş və alınan nəticələr əsasında reaksiya istiqamətinin və alınan məhsulların çıxımının müxtəlif faktorlardan asılılığı araşdırılmışdır.

Açar sözlər: benzilxlorid, 1-xlor-1-feniletan, benzilamin, piperidin, morfolin, propion turşusunun kalium duzu, dietilamin, anilin.

SYNTHESIS OF ETHYL BENZENE DERIVATIVES BASED ON TRANSFORMATIONS OF 1-CHLORO-1-PHENYLETHAN

G.Sh.Duruskary, Kh.A.Garazadeh, A.M.Maharramov, M.N.Maharramov, A.H.Lutfaliev

Reactions of 1-chloro-1-phenylethane with various reagents noted for their nucleophil and screened character of reaction centers have been analyzed to identify distinctions of reaction behavior depending upon reaction conditions and structural factors.

Keywords: benzylchloride, 1-chloro-1-phenylethane, benzylamine, piperidine, morpholine, potassium salts of propionic acid, diethylamine, aniline.

Поступила в редакцию 26.12.2013.