ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ЭФИРНЫХ МАСЕЛ В ДИЗЕЛЬНЫХ ТОПЛИВАХ

Н.Д.Мамулашвили*, Н.А.Салимова, Э.Ш.Нижарадзе*

*Государственный университет Шота Руставели, Грузия Азербайджанская государственная нефтяная академия

В работе показана возможность использования эфирных масел, выделенных из цитрусовых растений, в качестве добавок к дизельным топливам.

Дизельные топлива на основе минеральных и синтетических составляющих по некоторым эксплуатационным свойтвам превосходят аналогичные продукты биологического происхождения. Однако последние в связи с экологической безопасностью и возобновляемостью сырья привлекают все больше внимания производителей дизельного топлива.

Известно, что с целью улучшения тех или иных эксплуатационных свойств дизельных топлив в последние годы наблюдается интенсивный рост применения к ним присадок различного происхождения.

В работе [1] обстоятельно изложены материалы 3-х специализированных конференций в России, посвященных вопросам производства и применения присадок к топливам, проведенных в период с 2000 по 2004 г.

Возможность улучшения эксплуатациионных свойств нефтепродуктов применением добавок - производных растительных масел показана в работе [2].

Целью настоящей работы является исследование возможности улучшения физико-химических показателей качества дизельного топлива путем использования добавок растительного происхождения.

В качестве добавок к дизельным топливам нами использованы эфирные масла, полученные методом сепарации на цитрусово-перерабатывающем комбинате Грузии.

Физико-химические показатели эфирных масел представлены в табл.1. Из данных таблицы видно, что все исследованные эфирные масла содержат dлимонен и отличаются по химическому составу, кислотным и эфирным числам.

Таблица 1. Физико-химические показатели цитрусовых эфирных масел [2]

Наименование	Плотность	Коэффициент	Кислотное	Эфирное	Химический
эфирного масла	при t=20°C	рефракции,	число (к.ч.)	число	состав
		n_{D}^{20}		(.ғ.е)	
Апельсиновое	0.845-0.853	1.473-1.475	11–28	118–157	d-лимонен -90%
					альдегиды-2,7%
					d-лимонол
Лимонное	0.856-0.861	1.473-1.478	19–39	100-124	d-лимонен -90%
					цитраль-5%
					d-феландрен
Мандариновое	0.854-0.859	1.475–1.476	1.7	5–11	d-лимонен -90%
					метиловый
					спирт-2%
					эфир
Используемое	0.853	1.478	1.5	5.0	d-лимонен -90%
заводское					метиловый
масло					спирт

Из литературных источников [3] известно, что моноциклические терпены, в частности d-лимонен И феландрен, некоторых эфирновыделенные ИЗ масляничных растений, содержащих большое количество эфирных масел, способствуют улучшению эксплуатационных свойств моторных топлив, в частности уменьшают образование накипи на 7-10 мас. %.

Объектом исследования было взято дизельное топливо ГОСТ-305-75 Бакинской нефти. Композиции готовились в следующем количественном соотношении: на каждые $100\,$ мл топлива добавлялось определенное количество эфирного масла (в мл) -0.05; 0.1; 0.2; 0.5; 1.0.

Результаты влияния количества вводимого в дизельное топливо эфирного масла на фракционный состав композиции сведены в табл.2.

Таблица 2. Результаты фракционного состава дизельного топлива до и после введения эфирного масла

Наименование	Начало	Перегон.	Перегон.	Перегон.	Перегон.	Перегон.
образцов	кипения, ⁰ С	10% при t,	20% при t,	30% при t,	40% при t,	50% при t,
		$^{0}\mathrm{C}$	^{0}C	0 C	$^{0}\mathrm{C}$	$^{0}\mathrm{C}$
Исходная	170	220	235	245	260	270
проба						
Исх.+0.05 мл	135	205	225	235	250	250
Исх.+0.1 мл	145	210	230	235	245	250
Исх.+0.2 мл	155	205	220	235	245	255
Исх.+0.5 мл	155	205	220	235	245	255
Исх.+1.0 мл	160	205	225	245	250	260

Из данных таблицы видно, что в зависимости от количества вводимого масла фракционный состав становится более легким, при этом установлено, что мало изменяются плотность и вязкость дизельного топлива. Кроме того, введение эфирного масла в топливо улучшает цвет последнего и он становится прозрачным.

Сравнительная характеристика исходного и полученного дизельного топлива приведена в табл.3.

Таблица 3. Сравнительная характеристика исходного и полученного дизельного топлива

Наименование показателя	Исходное дизельное топливо	Композит дизельного топлива	
		с присадкой	
Внешний вид, цвет	Мутная жидкость, светло-	Прозрачная жидкость, светло-	
	желтого цвета с зеленым	оранжевого цвета	
	оттенком		
Растворимость в дизельном	_	Полная растворимость	
топливе			
Содержание воды, %	Отсутствует	Отсутствует	
Температура вспышки в	75	65	
открытом тигле, ⁰ С не менее			
pH	5.0	4.22	
Кислотное число не более	1.15	2.86	

Таким образом, исследованиями показана возможность улучшения некоторых показателей дизельного топлива введением в малом количестве добавки — эфирного масла, полученного из отходов переработки цитрусовых растений Грузии.

Преимуществом использования эфирных масел является то, что биодизель при попадании в воду не причиняет вреда растениям и животным. Кроме того, он подвергается практически полному биологическому распаду, в почве или в

воде микроорганизмы за 28 дней перерабатывают 99% биодизеля, что позволяет

говорить о минимизации загрязнения рек и озер. Помимо этого, при сгорании биодизель выделяется такое же количество углекислого газа, которое было потреблено из атмосферы растением, являющимся исходным сырьем для производства, в нашем случае эфирного масла, за весь период его жизни.

ЛИТЕРАТУРА

- 1. Данилов А.М. // Химия и технология топлив и масел. 2007. №2. С. 47.
- 2. Гроссгейм А.Г. Растительные богатства Кавказа. М.: Мир. 1952. 450 с.
- 3. Рудин М.Г., Драбкин А.Е. Краткий справочник нефтепереработчика. Ленинград. 1980. 345 с.

ЕФИР ЙАЬЛАРЫНІ ДИЗЕЛ ЙАНАЪАГЛАРЫНДА ИСТИФАДЯ ОЛУНМАСЫНЫН ТЯДГИГИ

Н.Д.Мамулашвили, Н.Я.Сялимова, Э.Ш.Нијарадзе

Тядгигatlar нятиъясиндя мцяййян олунмушдур ки, дизел йанаъаqlarının хассялярини onların tərkibinə sitrus bitkilərindən alınmış ефир йаьларыны ялавя еттәкlə йахшылашдырмаг мцмкцндцр.

ANALYSIS OF THE POSSIBILITY OF USE OF ETHER OILS IN DIESEL FUELS

N.D.Mamulashvili, N.A.Salimova, E.Sh.Nijaradze

The work retraces the possibility of use of ether oils extracted from citrus plants as additives to diesel fuels.