ВЛИЯНИЕ КОНЦЕНТРАЦИИ ГОЛЬМИЯ НА КАТАЛИТИЧЕСКИЕ И КИСЛОТНЫЕ СВОЙСТВА ПЕНТАСИЛОВ В РЕАКЦИИ АЛКИЛИРОВАНИЯ ТОЛУОЛА МЕТАНОЛОМ

Н.И.Махмудова

Бакинский государственный университет

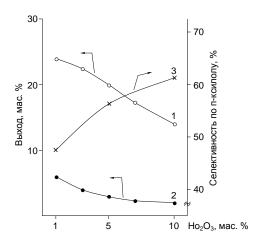
Изучено влияние концентрации гольмия на каталитические и кислотные свойства цеолита НЦВМ в алкилировании толуола метанолом. Установлено, что в результате модифицирования Н-пентасила гольмием на его поверхности формируются новые L-центры, которые в сочетании с В- центрами способны активировать молекулы метанола и толуола и повысить селективность алкилирования за счет электроноакцепторных свойств апротонного центра.

Высококремнеземные цеолиты типа пентасила — перспективные катализаторы для получения *п*-ксилола алкилированием толуола метанолом [1,2]. В ряде работ приводятся данные о влиянии природы и способа модифицирования на каталитические свойства пентасилов в реакции алкилирования толуола метанолом [2-4]. Цель настоящей работы — изучение влияния концентрации гольмия на каталитические и кислотные свойства Н-пентасила в реакции алкилирования толуола метанолом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

исследования Для использовали цеолит типа пентасила (ЦВМ) с мольным отношением $SiO_2/Al_2O_3=33$, который путем ионного обмена переводили в NH₄-форму по методике, описанной в [3]. Н-форму цеолита получали термическим разложением NH_4 - формы при $500~^{0}$ С в течение 4 ч. Катализаторы, модифицированные гольмием (1-10 мас.%), получали пропиткой Нформ цеолита раствором нитрата гольмия при 80 °C в течение 6 ч. Образцы сушили на воздухе в течение 16 ч, затем 4 ч в сушильном шкафу при 110^{-0} С, и, наконец, прокаливали 4 ч. в муфельной печи при 550 ${}^{0}C$.

Определение спектра кислотности катализаторов по термопрограммированной десорбции (ТПД) аммиака и природы кислотных центров ИК-спектроскопическим методом проводили по методикам, описанным в [5].


Опыты проводили на установке проточного типа со стационарным слоем катализатора объемом 4 см 3 , в реакторе идеального вытеснения при атмосферном давлении в интервале температур $300\text{-}400^{-0}\text{C}$, объемной скорости подачи сырья $1~\text{ч}^{-1}$ и мольном соотношении $\text{C}_7\text{H}_8\text{:CH}_3\text{OH:H}_2$, равном 2:1:2. Анализ продуктов реакции осуществляли хроматографическим методом [3].

Учитывая перспективность реакции алкилирования толуола метанолом, представлялось интересным проследить за изменением кислотных и каталитических свойств пентасила при его модифицировании гольмием.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рисунке приведена зависимость конверсии толуола и селективности по *n*ксилолу от содержания гольмия в цеолите НЦВМ. Видно, что введение гольмия в состав НЦВМ снижает конверсию толуола и повышает селективность по *п*-ксилолу. Наиболее резкое снижение конверсии толуола на модифицированном цеолите достигается при содержании гольмия более 5.0%. При содержании 5.0 мас.% гольмия в цеолите селективность по п-ксилолу составляет 58.5 %. Дальнейшее увеличение содержания гольмия в цеолите приводит к росту селективности по п-ксилолу до 61.3%. Модифицирование НЦВМ гольмием существенно снижает также интенсивность протекания побочных реакций. С увеличением содержания гольмия в НЦВМ до 10 мас.% выход ароматических углеводородов

(APУ) $C_9 - C_{10}$ снижается до 2.0 мас.%.

Зависимость выхода ксилолов (1), АРУ C_9 - C_{10} (2) и селективности по n-ксилолу (3) от концентрации гольмия в НЦВМ (350 0 C, 2 ч $^{-1}$, C_7 H $_8$: CH $_3$ OH=2:1)

Каталитическая активность цеолитных катализаторов в первую очередь определяется кислотными свойствами. Действительно, как видно из таблицы, с увеличением содержания гольмия в образцах происходит постепенное уменьшение концентрации сильных протонодонорных кислотных центров с Е>130 кДж/моль. Причем, при концентрациях гольмия выше 3.0 мас.% происходит резкое снижение концентрации этих центров. При содержании 10.0 мас.% Но в образцах концентрация сильных протонодонорных кислотных центров с Е>130 кДж/моль снижается почти в 6 раз (с 314.2 до 43.2 мкмоль· Γ^{-1}) по сравнению с Hформой.

Распределение числа кислотных центров (мкмоль $\cdot \Gamma^{-1}$) по величинам энергии активации (Е, кДж/моль) для цеолитов, модифицированных различными модификаторами

Образец	E<95	95≤E<130	E>130	Высокотемпера-	130 <e<(160-< th=""></e<(160-<>
	кДж/	кДж/моль	кДж/	турное плечо	175) кДж/моль
	МОЛЬ		МОЛЬ		
1% Но НЦВМ	385.5	228.5	169.5	60.5 (>160 °C)	110.4
3% Но -НЦВМ	272.5	249.3	116.7	39.5 (>165 °C)	79.5
5%Но - НЦВМ	213.4	265.2	77.3	26.1 (>170 °C)	51.2
10%Но -НЦВМ	248.2	284.3	43.2	24.1 (>165 °C)	19.1

Как показали спектроскопические исследования, в ИК-спектрах пиридина, адсорбированного на модифицированных гольмием образцах, присутствуют П.П. 1550 см⁻¹, 1449 см⁻¹ и 1490 см⁻¹. Однако после термодесорбции при $420~^{\circ}$ С вместо П.П. 1449 см⁻¹ в спектрах модифицированных CM⁻¹. пентасилов появляется П.П.1453 Прочность адсорбции пиридина на этих апротонных центрах, содержащих катионы Ho^{3+} , достаточно велика – даже после вакуумирования при 530 ⁰C значительная доля пиридина не десорбируется с поверхности, что согласуется с данными, полученными при изучении кислотных свойств этих образцов методом ТПД аммиака.

На основании сопоставления результатов ИК-спектроскопического исследования и каталитических данных можно сделать вывод о непосредственной связи между апротонной кислотностью модифицированных пентасилов и их активностью и селективностью в алкилировании толуола

метанолом. В результате модифицирования происходит существенное изменение соотношения В- и L-центров: введение в пентасилы модификаторов увеличивает соотношение L/B центров. С увеличением содержания модификаторов в цеолите до 5.0 мас.% происходит существенное возрастание соотношения L/B центров. Дальнейшее увеличение содержания модификаторов мало изменяет это соотношение.

Таким образом, совокупность каталитических данных и результатов изучения кислотности приводит к выводу, что в результате модифицирования на поверхности декатионированных пентасилов разного состава формируются новые L-центры. Эти центры в сочетании В-центрами способны активировать молекулы толуола и метанола, предотвратить превращение образующихся алкенов, диспропорционирование и трансалкилирование ароматических углеводородов за счет электроноакцепторных свойств апротонного центра, и тем самым,

повысить пара-селективность катализатора.

ЛИТЕРАТУРА

- 1. Сидоренко Ю.Н., Галич П.Н. Нефтехимия. 1991. т.31. № 1. С.54.
- 2. Романников В.Н. // Химия и компьютерное моделирование, Бутлеровские сообщения. 2000. №3. С. 123.
- 3. Мамедов С.Э., Ахмедов Э.И., Керимли Ф.Ш., Махмудова Н.И. // Журнал прикладной химии. 2006. т.79. № 10. С.1741.
- 4. Nai Y. //Ind. Eng. Chem. Res., 2001. v.40. P.4157.
- 5. Ющенко В.В. // Журнал физической химии. 1997. т.71. № 4. С.628.

TOLUOLUN METANOLLA ALKİLLƏŞMƏSİ REAKSİYASINDA HOLMİUMUN MİQDARININ PENTASİLLƏRİN KATALİTİK VƏ TURŞU XASSƏLƏRİNƏ TƏSİRİ

N.İ.Mahmudova

Toluolun metanolla alkilləşməsi reaksiyasında holmiumun miqdarının H-pentasilin katalitik və turşu xassələrinə təsiri öyrənilmiş və müəyyən olunmuşdur ki, modifikasiya nəticəsində seolitin səthində yeni aproton L- mərkəzləri əmələ gəlir. Bu elektronoakseptor xassəli mərkəzlər B-mərkəzləri ilə birgə metanol və toluol molekullarını aktivləşdirməklə katalizatorun paraseçiciliyinin artmasına qadir olur.

THE EFFECT OF Ho CONCENTRATION ON THE CATALYTIC AND ACIDIC PROPERTIES OF PENTASYLES IN THE TOLUENE ALKYLATION REACTION BY METHANOL

N.I.Makhmudova

The effect of Ho concentration on the catalytic and acidic properties of pentasyles in the toluene alkylation reaction by methanol has been studied. It found that as a result of H-pentasyles modification by Ho the new L-centres are formed on its surface which in combination with B-centres are able to activate methanol and toluene molecules and increase alkylation selectivity at the expense of electron-acceptor properties of aprotic centre.