УДК 546.215.547.313.577.1

КИНЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ РЕАКЦИИ МОНООКСИДИРОВАНИЯ ЭТИЛЕНА НАД БИОМИМЕТИЧЕСКИМ КАТАЛИЗАТОРОМ $per-FTPhPFe^{3+}OH/Al_2O_3$ МЕТОДОМ СТАЦИОНАРНЫХ КОНЦЕНТРАЦИЙ

У.В.Насирова¹, И.Т.Нагиева², Л.М.Гасанова¹, Т.М.Нагиев^{1.2}

¹Институт химических проблем имени акад. М.Ф. Нагиева Национальной АН Азербайджана, пр. Г. Джавида 29, Баку 370143, Азербайджан
²Бакинский государственный университет, Баку, Азербайджан
E-mail: tnagiev@azeurotel.com; tnagiev@azeurotel.com; tnagiev@azeurotel.com; tnagiev@azeurotel.com; tnagiev@azeurotel.com; tnagiev@azeurotel.com;

Исследована кинетика реакции окисления этилена пероксидом водорода над биомиметическим катализатором методом стационарных концентраций. Найдены эффективные значения кинетических параметров реакции монооксидирования этилена.

Ключевые слова: биомиметик, пероксид водорода, монооксидирование

В настоящей работе приводятся результаты кинетического исследования модельной системы монооксигеназной реакции, включающей комплекс перфторированного тетрафенилпорфирина железа (III) — per-FTPhPFe³⁺OH, нанесённый на Al_2O_3 [1], окислитель — H_2O_2 и субстрат — этилен, методом стационарных концентраций.

В условиях газофазного каталитического окисления этилена пероксидом водорода продемонстрирована стабильная монооксигеназная активность катализатора, позволившая изучить кинетические закономерности превращения субстрата и накопления продуктов в широком интервале варьирования параметрами реакции [2-4].

В работе [5] проводилось кинетическое моделирование реакции монооксидирования этилена в присутствии биомиметического катализатора на основе кинетики ферментативного катализа с применением уравнения Михаэлиса-Ментена. При применении уравнения Михаэлиса-Ментена имел место ряд допущений, которые, несо-

мненно, сказываются на степени адекватности кинетической модели: во-первых, при оценке констант скоростей реакции при каждой температуре брали среднее значение, из которого не видно, насколько друг от друга отклоняются константы скоростей для каждого отдельного опыта (температура постоянная); во-вторых, при сопряженном характере реакции описывалась только одна из брутто-реакций.

Эти недостатки в значительной степени можно избежать, если применить метод стационарных концентраций, который широко используется в химической кинетике. При использовании этого метода необходимо предложить один или ряд гипотетических механизмов, из которых один будет адекватен экспериментальным данным.

Когерентно-синхронизированный характер каталазной и монооксигеназной реакций адекватно иллюстрируется схемой 1. Из схемы видно, что первичной реакцией является каталазная (1), а вторичной — монооксигеназная (2).

$$C$$
хема 1.
$$H_2O_2 \longrightarrow ImtOH \longrightarrow ImtOOH \longrightarrow C_2H_5OH$$

$$C_2H_4$$

где ImtOH — биоимитатор рег-FTPhPFe³⁺OH/Al₂O₃, ImtOOH — интермедиат рег-FTPhPFe³⁺OOH/Al₂O₃, 1 — каталазная (первичная) реакция, 2 — монооксигеназная (вторичная), κ_1 — константа скорости образования интермедиата, κ_2 — константа скорости каталазной реакции, κ_3 — константа скорости монооксигеназной реакции.

Таким образом, на основе предложенной нами схемы 1 для реакции когерентно-синхронизированного окисления этилена пероксидом водорода на биоимитаторе [6] выведем следующее кинетическое уравнение:

$$r_{C_2H_4} = k_3 \left[C_2 H_4 \right] \left[\operatorname{Im} tOOH \right] \tag{1},$$

где $r_{C_2H_4}$ - скорость расходования этилена в монооксигеназной реакции, k_3 - константа скорости монооксигеназной реакции.

Изменение концентрации высокоактивного промежуточного вещества – интермедиата - ImtOOH (схема 1) методом стационарных концентраций описывается следующим уравнением:

$$\frac{d[\text{Im}\,tOOH]}{dt} = k_1[H_2O_2][\text{Im}\,tOH] - k_2[H_2O_2][\text{Im}\,tOOH] - k_3[C_2H_4][\text{Im}\,tOOH] \approx 0,$$
 (2)

Подставив выражение для интермедиата (3) в уравнение (1), получим:

$$r_{C_2H_4} = k_1 k_3 \left[\text{Im} \, tOH \right] \frac{\left[H_2 O_2 \right] \left[C_2 H_4 \right]}{k_2 \left[H_2 O_2 \right] + k_3 \left[C_2 H_4 \right]} \tag{4}$$

Скорость каталазной реакции, как правило, значительно превышает скорость монооксигеназной реакции, и согласно

этому представлению можно принять, что $k_2[H_2O_2]>> k_3[C_2H_4]$, и тогда имеем:

$$r_{C_2H_4} = k_{_{\partial\phi\phi}} \left[\operatorname{Im} tOH \right] \left[C_2H_4 \right]$$
 или $k_{_{\partial\phi\phi}} = \frac{r_{C_2H_4}}{\left[C_2H_4 \right]}$ (5), где $k_{_{\partial\phi\phi}} = \frac{k_1k_3}{k_2} \left[\operatorname{Im} tOH \right]$

На основании уравнения (5) и экспериментальных данных для каждого эксперимента в отдельности при различной тем-

пературе рассчитали значения $k_{_{9\phi\phi}}$ и свели в таблицу.

Эффективные значения кинетических констант реакции монооксидирования этилена пероксидом водорода на биомиметике per-FTPhPFe $^{3+}$ OH/Al $_2$ O $_3$.

T, K	$k_{\circ\phi\phi},c^{-1}$	Е _{эфф} , <i>кДж/моль</i>	k ₁ г/моль∙с
413	0.0881		45.38
433	0.138	59.0	65.74
473	0.1968		92.22

Из данных таблицы видно, что значения $k_{_{3\phi\phi}}$ для каждой температуры отличаются на допустимую величину отклонения от среднего значения, где-то в пределах 10%. Определив для каждой температуры

среднее значение $k_{9\phi\phi}$, с помощью уравнения Аррениуса рассчитали значение $E_{9\phi\phi}=59.0~$ кДж/моль (табл. 1). Это значение согласуется со значениями энергии активации ферментативных реакций.

ЛИТЕРАТУРА

- 1. Nagiev T.M. // Coherent Synchronized Oxidation Reactions by Hydrogen Peroxide. Amsterdam: Elsevier, 2007. 325 p.
- 2. Gasanova L.M., Mustafaeva Ch.A., Nagieva I.T. at al. // 14th International Congress on Catalysis. July 13-18, 2008. COEX Convention Center, Seoul, Korea.
- 3. Nasirova U.V., Gasanova L.M., Nagieva I.T. at al. // Catalysis for a Sustainable World. EuropaCat IX. Salamanca (Spain), 30th August 4th September 2009. P. 313.
- 4. Nasirova U.V., Gasanova L.M., Nagieva I.T. at al. // 16th European Symposium on Organic Chemistry. ESOC 2009. Prague. Czech Republic, 12 16th July, 2009. P 2.055.
- 5. Насирова У.В., Нагиева И.Т., Гасанова Л.М., Нагиев Т.М. // Азерб. Хим. Журн. 2011. № 1. С.12-15.
- 6. Насирова У.В., Гасанова Л.М., Нагиев Т.М. // Журн. Физ. Химии. 2010. Т. 84, № 6, С. 1050-1054.

ETİLENİN per-FTPhPFe³⁺OH/Al₂O₃ BİOMİMETİK KATALİZATORU ÜZƏRİNDƏ MONOOKSİDLƏŞDİRİLMƏSİ REAKSİYASININ KİNETİKASININ QATILIQLARIN STASİONARLIĞI METODU İLƏ TƏDQİQİ

U.V.Nəsirova, İ.T.Nağıyeva, L.M.Həsənova, T.M.Nağıyev

Biomimetik katalizator üzərində etilenin hidrogen peroksidilə oksidləşməsi reaksiyasının kinetikasının tədqiqi, qatılıqların stasionarlığı metodu ilə aparılmışdır. Etilenin monooksidləşməsi reaksiyasının effektiv kinetik parametrləri təyin edilmişdir

Açar sözlər: biomimetik, hidrogen peroksidi, monooksidləşmə

KINETIC INVESTIGATION OF ETHYLENE MONOOXIDATION REACTION OVER BIOMIMETIC CATALYST, per-FTPhPFe³⁺OH/Al₂O₃, BY STATIONARY CONCENTRATIONS METHOD

U.V.Nasirova, I.T.Nagiyeva, L.M.Hasanova, T.M.Nagiyev

The kinetics of ethylene oxidation by hydrogen peroxide over biomimetic catalyst, per-FTPhPF e^{3+} OH/Al₂O₃, was analyzed by the method of stationary concentrations. Effective values of kinetic parameters of ethylene monooxidation reaction have been determined.

Key words: biomimetic, hydrogen peroxide, monooxidation