УДК 541.123.6:546.65'87'24

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМАХ YbTe-PbBi₂Te₄ К.Д.Расулова, З.С.Алиев, М.Б.Бабанлы

Бакинский государственный университет AZ 1148 Баку, ул. 3.Халилова, 23; e-mail: info@bsu.az.

Методами ДТА и $P\Phi A$ исследованы фазовые равновесия по политермическим разрезам YbTe-0.33PbBi₄Te₇ (1) и YbTe-0.5PbBi₂Te₄ (2) четверной системы Yb-Pb-Bi-Te. Установлено, что система (1) частично (T<1000K) квазибинарна и имеет фазовую диаграмму эвтектического типа. Система (2) неквазибинарна из-за инконгруэнтного характера плавления соединения $PbBi_2Te_4$, но стабильна ниже солидуса. Взаимная растворимость компонентов при комнатной температуре не превышает ~2 мол %.

Ключевые слова: фазовая диаграмма, теллурид иттербия, теллуриды свинца-висмута, тетрадимитоподобная структура, система Yb-Pb-Bi-Te.

Слоистые теллуриды свинца-висмута (PbBi₂Te₄, PbBi₄Te₇ и др.) с тетрадимито-подобной структурой относятся к числу перспективных функциональных материалов современной техники. Эти соединения являются низкоомными полупроводниками и имеют высокие термоэлектрические показатели [1,2]. Они также являются трехмерными топологическими изоляторами и могут быть использованы в спинтронике [3,4].

Один из путей улучшения прикладных свойств этих фаз заключается в их легировании различными элементами, в частности РЗЭ. Учитывая это, мы предприняли комплексное физико-химическое исследование четверной системы Yb-Pb-Bi-Te по концентрационной плоскости YbTe-PbTe-Bi₂Te₃.

В данной работе представлены результаты исследования фазовых равновесий по разрезам YbTe-0.33PbBi₄Te₇ и YbTe-0.5PbBi₂Te₄. Коэффициенты перед формулами тройных соединений использованы для одинакового выражения состава по данным разрезам и в концентрационной плоскости YbTe-PbTe-Bi₂Te₃ без пересчета.

Исходные соединения вышеуказанных политермических разрезов изучены подробно. Теллурид иттербия плавится конгруэнтно при ~2000К и имеет кубическую структуру типа NaCl (Пр.гр Fm $\overline{3}$ m) с периодом: a=6.366Å [5,6]. Тройное соединение PbBi₄Te₇ плавится конгруэнтно при 858К, а PbBi₂Te₄ - инконгруэнтно при 856К. Параметры их тетрадимитоподобной гексагональной решетки равны a=4.436; c=41.771 (PbBi₂Te₄) и a=4.411; c=24.071 (PbBi₄Te₇) [7,8].

ЭКСПЕРИМЕНТЫ И ИХ РЕЗУЛЬТАТЫ

Для синтеза соединений и сплавов были использованы простые вещества следующих марок: свинец—С-000, висмут—ОСЧ-11-4, иттербий — Итб-1, теллур—ТВ-3.

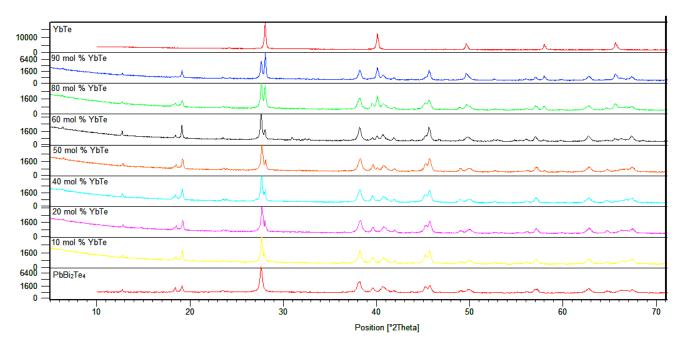
Соединения $PbBi_2Te_4$ и $PbBi_4Te_7$ получали сплавлением элементарных компонентов в вакуумированных ($\sim 10^{-2}\Pi a$)

кварцевых ампулах при 1000-1100К с последующим медленным охлаждением до температуры на 30-50К ниже температуры плавления (разложения) соответствующего соединения и отжигом в течение 500ч.

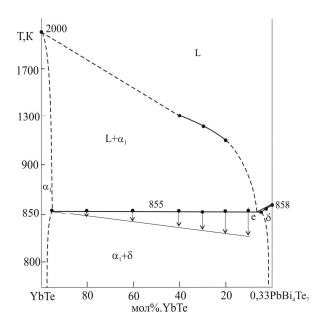
Учитывая взаимодействие иттербия с кварцем, соединение YbTe и сплавы

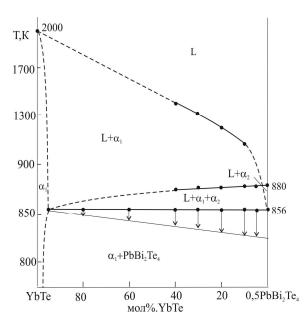
исследуемых систем синтезировали в графитизированных кварцевых ампулах в условиях вакуума. Синтез YbTe проводили взаимодействием элементарных компонентов при 1200К в течение 10-12ч. После завершения реакции температуру печи уменьшали до 750-800К, при которой проводили гомогенизирующий отжиг в течение 700ч.

Индивидуальность синтезированных соединений контролировали методами ДТА и РФА.


Сплавы исследуемых систем получали взаимодействием исходных соединений в различных соотношениях. Сначала печь в течение 5-6ч. нагревали до 1200К, при которой ампулу с расплавленной (или частично расплавленной) реакционной смесью выдерживали в течение 2ч., а затем медленно охлаждали и подвергали длительному (~1000ч.) отжигу при 800К.

Отожженные сплавы были исследованы методами дифференциально-термического и рентгенфазового анализов. ДТА проводили на приборах HTP-74 и Термоскан-2 в интервале температур от комнатной до


1300K, а РФА — на порошковом дифрактометре D8 ADVANCE фирмы Bruker (CuK_{α} -излучение).


На рис.1. представлены порошковые дифрактограммы некоторых сплавов системы YbTe-0.5PbBi₂Te₄. Как видно, дифрактограммы сплавов состоят ИЗ совокупности линий отражения исходных соединений. Новые дифракционные линии, а также заметные смещения линий отражения исхолных компонентов не наблюдаются. Аналогичная картина наблюдается также для сплавов системы YbTe-0.33PbBi₄Te₇. Таким образом, по данным РФА разрезы YbTe-0,33PbBi₄Te₇ и YbTe-0,5PbBi₂Te₄ являются стабильными коннодами концентрационной плоскости YbTe-PbTe-Bi₂Te₃.

Данные ДТА в сочетании с вышеуказанными результатами РФА позволили построить Т-х фазовые диаграммы исследуемых систем (рис.2 а,б). Часть кривой ликвидуса α_1 -фазы на основе YbTe построена экстраполяцией к точке плавления чистого YbTe.

Рис.1. Порошковые дифрактограммы некоторых сплавов систем YbTe-0.33PbBi₄Te₇ и YbTe-0.5PbBi₂Te₄.

Рис.2. Фазовые диаграммы систем YbTe-0.33PbBi₄Te₇ (a) и YbTe-0.5PbBi₂Te₄ (б).

Как видно из рис.2,а, Т-х диаграмма YbTe-0.33 PbBi₄Te₇ системы геометрической форме может быть отнесена к квазибинарным системам эвтектического типа. Эвтектика имеет состав ~5 мол % YbTe кристаллизуется при 855 К. Однако полученные нами данные [9] о наличии в YbTe-PbTe непрерывного высокотемпературных (Т>1100К) твердых растворов указывают на TO, что при указанных температурах конноды расплав" могут значительно отклоняться от Т-х плоскости разреза YbTe-0.33PbBi₄Te₇. Поэтому данный разрез можно считать лишь частично квазибинарным.

Система YbTe-0.5PbBi₂Te₄ (рис.2,б) неквазибинарна. Это обусловлено тем, что соединение PbBi₂Te₄ плавится с разложением по перитектической реакции при 856 K PbBi₂Te₄ \leftrightarrow L+ α_2 и полностью переходит в

расплавленное состояние при 880 К [8] (а2твердые растворы на основе PbTe в системе PbTe-Bi₂Te₃). Поэтому на фазовой диаграмме имеются гетерогенные области $(L+\alpha_2)$ $L+\alpha_1+\alpha_2$), которых олна ИЗ сосуществующих фаз ПО составу не находится на плоскости данного разреза (рис.2,б).

С учетом вышеизложенного можно предположить, что на рис.2,б промежуточный термический эффект (875-880K) отвечает моновариантному эвтектическому ($L\leftrightarrow\alpha_1+\alpha_2$) или перитектическому ($L+\alpha_1\leftrightarrow\alpha_2$) равновесию, а горизонталь при 850K — нонвариантному переходному равновесию $L+\alpha_2\leftrightarrow\alpha_1+$ PbBi₂Te₄.

Построением треугольника Таммана оценена растворимость на основе YbTe (α_1 -фаза), которая при температуре нонвариантной кристаллизации в обеих системах достигает ~5 мол %.

ЛИТЕРАТУРА

- 1. Шевельков А.В. Химические аспекты создания термоэлектрических материалов. // Успехи химии. 2008. т.77. №1. С.3-21.
- 2. Kanatzidis M.G. The role of solid state chemistry in the discovery of new thermoelectric materials. // Semiconductors and semimetals. / Ed. Terry M. Tritt San Diego; San Francisco; N.Y.; Boston; London; Sydney; Tokyo: Academ. Press, 2001. v.69. p.51-98.
- 3. Eremeev S.V., Landolt G., Aliyev Z.S. et al. Atom-specifik spin mapping and buried topological states in a homologous series of topolifical insulators. // Nature Commun. 3:635. Doi: 10.1038/ncomms1638 (2012).
- 4. Eremeev S.V., Koroteev Y.M., Chulkov E.V. On possible deep subsurface states in topological insulators: The PbBi₄Te₇ system. // JETP Letters. 2010. v.92(3). p.161-165.
- 5. Binary alloy phase diagrams. Ed.T.B. Massalski, Second edition. ASM

- International, Materials park. Ohio. 1990. 3875p.
- 6. Диаграммы состояния двойных металлических систем. Справочник. Под ред. Н.П. Лякишева М.: Машиностроение. т.1. 1996. 992 с.; т. 2.1997.1024 с.
- 7. Шелимова Л.Е., Томашик В.Н., Грыцив В.И. Диаграммы состояния в полупроводниковом материаловедении. Справочник. М.:Наука. 1991. 368 с.
- 8. Карпинский О.Г., Шелимова Л.Е., Авилов Е.С. и др. Рентгенографическое исследование смешанослойных соединений в системе PbTe-Bi₂Te₃. // Неорган. Материалы. 2002. т.38. №1. С.24-32.
- 9. Алиев З.С., Расулова К.Д., Имамалиева С.З. и др. Физико-химическое исследование систем YbTe-SnTe(PbTe)-Bi₂Te₃. / XIV международная научно-техническая конференция «Наукоемкие химические технологии-2012», Тула Ясная Поляна Куликово Поле. 2012. С.270.

YbTe-PbBi₄Te₇ və YbTe-PbBi₂Te₄ SİSTEMLƏRİNDƏ FAZA TARAZLIQLARI

K.D.Rəsulova, Z.S. Əliyev, M.B.Babanlı

DTA və RFA üsulları ilə Yb-Pb-Bi-Te dördlü sistemi YbTe-0.33PbBi₄Te₇ (1) və YbTe-0.5PbBi₂Te₄ (2) politermik kəsikləri üzrə tədqiq edilmişdir. Müəyyən edilmişdir ki, (1) sistemi qismən kvazibinardır (T<1000K) və evtektik tipli hal diaqramına malikdir. (2) sistemi isə PbBi₂Te₄ birləşməsinin inkonqruyent əriməsilə əlaqədar olaraq qeyri-kvazibinardır, lakin solidusdan aşağıda stabildir. Komponentlərin otaq temperaturunda qarşılıqlı həllolması 2 mol %-dən artıq deyil.

Açar sözlər: faza diaqramı, itterbium tellurid, qurğuşun-bismut telluridləri, tetradimitəbənzər quruluş, Yb-Pb-Bi-Te sistemi.

PHASE EQUILIBRIUMS IN YbTe-PbBi₄Te₇ AND YbTe-PbBi₂Te₄ SYSTEMS

K.D.Rasulova, Z.S.Aliyev, M.B.Babanly

Phase equilibriums by polythermal sections in $YbTe-0.33PbBi_4Te_7$ (1) and $YbTe-0.5PbBi_2Te_4$ (2) of the quaternary system Yb-Pb-Bi-Te have been studied through the use of DTA and XRD methods. It found that the system (1) is a partly quasi-binary of eutectic type. The system (2) is non-quasibinary due to incongruent nature of melting of compound $PbBi_2Te_4$, but is stable below the solidus. Mutual solubility of the components does not exceed 2 mol% at room temperature.

Keywords: phase diagram, ytterbium telluride, lead-bismuth tellurides, tetradymite-type structure, the system Yb-Pb-Bi-Te.

Поступила в редакцию 08.02.2013.