## КОРРЕЛЯЦИОННЫЙ АНАЛИЗ В РЯДУ N-АЛКИЛКАРБОКСИИМИДОВ ХЛОР-ЭНДИКОВОЙ КИСЛОТЫ

### М.С.Салахов, О.Т.Гречкина, Б.Т.Багманов

Институт полимерных материалов Национальной АН Азербайджана

Описана взаимосвязь константы кислотной ионизации и температуры плавления со значениями топологических индексов Винера, Рандича и теоретико-информационных индексов, выявлена их предсказательная способность в ряду N-алкилкарбоксиимидов хлор-эндиковой кислоты.

В продолжение наших ранних исследований по установлению зависимосреакционной способности 5,5-диалкокситетрахлорциклопентадиенов физических свойств от теоретико-информационных индексов [1] в данной работе

приводятся результаты установления корреляционных зависимостей топологических индексов (ТИ) с некоторыми физико-химическими параметрами синтезированных нами [2] полихлорированных имидокарбоновых кислот (I-IV).

Конкретная цель данного исследозаключалась установлении вания В корреляции между теоретико-информационными индексами  $IC_k$ , $TIC_k$ , $SIC_k$ , $CIC_k$  (k=0-2), индексами Рандича (1) х и Винера W с одной стороны и  $pK_{\alpha}$  и Тпл. для (I-IV) - с другой, изменяющимися в зависимости от наращивания метиленовых звеньев алкилкарбоксильной группе имидного фрагмента соединений (I-IV).

$$IC_{k} = -\sum_{i=1}^{N} \log_{2} p_{i}, \ p_{i} = n_{i} / n \ (1) \quad TIC_{k} = n_{i} C_{k} \ (2) \quad SIC_{k} = IC_{k} / \log_{2} n \ (3) \quad CIC_{k} = \log_{2} n - IC_{k} \ (4)$$

Инлекс Винера определяли топологических полусумму расстояний между всеми N атомами в молекулярном графе и рассчитывали по формуле [4]:

$$W = \frac{1}{2} \sum_{i=1}^{N} d_{ij}$$
 (5)

где  $d_{ii}$  - i-й j-й элемент матрицы расстояний, который показывает наикратчайшее расстояние между вершинами і и ј в графе. Элементы матрицы вычислены ПО

формулам: 
$$d_{ii} = 1 - \frac{6}{z_i}$$
 (6)

Теоретико-информационные индексы информационного содержания графа относительно окрестности k-го порядка в расчете на одну вершину (IC<sub>k</sub>), полного информационного содержания  $(TIC_k),$ структурного информационного содержания (SIC<sub>k</sub>) и комплементарного информационного coдeржания (CIC<sub>k</sub>) соединений (1-4) рассчитаны по формулам (1-4) для k=0-2 [3]:

$$SIC_k = IC_k / log_2 n$$
 (3)  $CIC_k = log_2 n - IC_k$  (4)

$$d_{ij} = \sum b \frac{36}{z_i z_j} \tag{7}$$

где  $z_i$  и  $z_i$  —заряд ядра атомов i и j, соединенных данной связью, b- величина, характеризующая порядок связи. Индекс связности Рандича, вычисляли по формуле [3]:

$$^{(1)}\chi = \sum (\delta_i \cdot \delta_j)^{-\frac{1}{2}} \tag{8}$$

δi - $\delta_i$ где степени вершин молекулярного графа. Они соответствуют связям, соединяющим атомы і отображают состав графа. Суммирование проводится по всем ребрам графа.

| <b>Таблица 1.</b> Теоретико-информационные индексы $IC_k$ , $TIC_k$ , $SIC_k$ , $CIC_k$ (k=0-2), $^{(1)}\chi$ , W, $^{(1)}\chi$ | Г.пл. |
|---------------------------------------------------------------------------------------------------------------------------------|-------|
| (°C), pК соелинений (I-IV)                                                                                                      |       |

| №   | n | $IC_0$ | $\mathrm{TIC}_0$ | $\mathrm{CIC}_0$ | $\mathrm{SIC}_0$ | $IC_1$ | $TIC_1$ | $CIC_1$ | $SIC_1$ | $IC_2$ | $TIC_2$ | $CIC_2$ | $SIC_2$ | $\chi_{(I)}$ | W                       | $pK_\alpha$ | ${ m T}_{\scriptscriptstyle { m III}}$ |
|-----|---|--------|------------------|------------------|------------------|--------|---------|---------|---------|--------|---------|---------|---------|--------------|-------------------------|-------------|----------------------------------------|
| I   | 1 | 2.044  | 55.196           | 2.711            | 0.429            | 3.171  | 92.069  | 1.346   | 0.717   | 3.85   | 103.95  | 0.905   | 0.809   | 8.491        | 508.793                 | 5.8         | 302                                    |
| II  | 2 | 2.031  | 60.942           | 2.889            | 0.413            | 2.959  | 88.792  | 1.961   | 0.601   | 4.115  | 124.35  | 0.776   | 0.842   | 8.991        | 616.099                 | 7.10        | 198                                    |
| III | 3 | 2.007  | 66.254           | 3.086            | 0.398            | 3.399  | 112.189 | 1.644   | 0.674   | 4.197  | 138.501 | 0.847   | 0.832   | 9.491        | 701.191 616.099 508.793 | 7.84        | 160                                    |
| IV  | 4 | 1.979  | 71.27            | 3.189            | 0.383            | 3.341  | 120.29  | 1.828   | 0.646   | 4.201  | 151.236 | 0.968   | 0.813   | 9.991        | 790.873                 | (8,514)     | (96)                                   |

Выявлено, что для этих соединений существуют достаточно хорошие линейные корреляции  $f(pK_{\alpha})$ -  $TIC_2$ ,  $f(pK_{\alpha})$ -W ,  $f(pK_{\alpha})$ - $f(T_{nn})$ -  $TIC_2$ ,  $f(T_{nn})$ -W и  $f(T_{nn})$ - $f(T_{nn})$ -

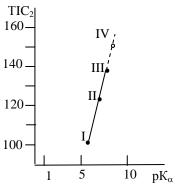



Рис.1 Зависимость ТИ  $TIC_2$  от  $pK_{\alpha}$  для соединений (I-IV)

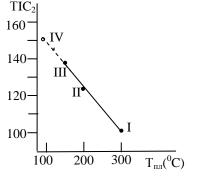



Рис.2 Зависимость ТИ  $TIC_2$  от  $T_{nn}$  для соединений (I-IV)

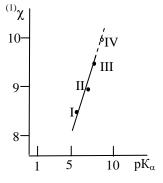



Рис.3 Зависимость ТИ  $^{(1)}\chi$  от рК $_{\alpha}$  для соединений (I-IV)

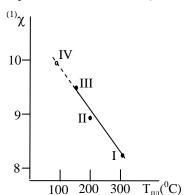



Рис.4 Зависимость ТИ  $^{(1)}\chi$  от  $T_{\pi\pi}$  для соединений (I-IV)

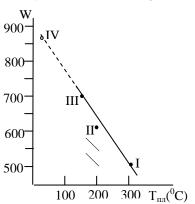



Рис.5 Зависимость ТИ W от  $pK_{\alpha}$  для соединений (I-IV)

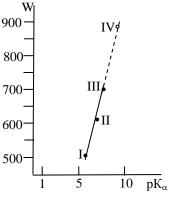



Рис.6 Зависимость ТИ W от р $K_{\alpha}$  для соединений (I-IV)

По методу наименьших квадратов [5] найдены параметры корреляционной зависимости  $y = a \cdot x + b$  между  $pK_{\alpha}$ ,  $T_{\pi\pi}$  и ТИ  $TIC_2$ , W и  $^{(1)}\chi$  для соединений (I-IV).

**Таблица 2.** Параметры корреляционной зависимости  $y = a \cdot x + b$  между  $pK_{\alpha}$  и  $T_{\pi\pi}$  и топологическими индексами  $TIC_2$ ,  $^{(1)}\chi$  и W для соединений (I-IV).

|               | (       |           |           |
|---------------|---------|-----------|-----------|
| У             | X       | a         | b         |
| $pK_{\alpha}$ | $TIC_2$ | 0.0551    | 0.1805    |
| $pK_{\alpha}$ | W       | 0.0107    | 0.4309    |
| $pK_{\alpha}$ | (1)χ    | 2.0420    | -11.4463  |
| Тпл           | $TIC_2$ | -4.1795   | 730.9813  |
| Тпл           | W       | -0.7479   | 675.2425  |
| Тпл           | (1)χ    | -142.0113 | 1496.8241 |

Коэффициенты корреляционных уравнений представлены в таблице 2. Используя корреляционные уравнения (табл.2) нами найдены предполагаемые значения  $pK_{\alpha}$  и  $T_{n\pi}$  для соединения (IV). (табл.3)

**Таблица 3.** Предполагаемые значения  $pK_{\alpha}$  и  $T_{nn}(^{0}C)$  для (IV)

| ТИ               | $pK_{\alpha}$ | $T_{\pi\pi}(^{0}C)$ |
|------------------|---------------|---------------------|
| TIC <sub>2</sub> | 8.514         | 96                  |
| W                | 8.893         | 83                  |
| (1)χ             | 8.995         | 78                  |

Таким образом, выявлено, что в ряду полихлорированных имидокарбоновых кислот (I-IV), имеющих одинаковый цикл и различающихся только количеством метиленовых звеньев в алкилкарбоксильной группе имидного фрагмента (n=1-4), индексы  $TIC_2$ , W и  $^{(1)}\chi$  хорошо корелируют

с р $K_{\alpha}$  и  $T_{\Pi\Pi}$  этих соединений. Как видно из рис.(1-6), линейные зависимости  $f(T_{\Pi\Pi})$  -  $TIC_2$  и  $f(pK_{\alpha})$ -  $TIC_2$  носят более строгий характер, чем корреляции  $f(T_{\Pi\Pi})$ -W,  $f(T_{\Pi\Pi})$ - $^{(1)}\chi$ ,  $f(pK_{\alpha})$ - W и  $f(pK_{\alpha})$ - $^{(1)}\chi$ .

#### ЛИТЕРАТУРА

- 1. Салахов М.С., Багманов Б.Т, Гречкина О.Т., Умаева В.С.// Химич. проблемы. 2008. №2. С.289.
- 2. Салахов М.С., Каткова И.В., Умаева В.С., Тейвус Э.М., //Азерб.хим.журн. 1980. №2. С.63.
- 3. Рувре Д. Химические приложения топо-
- логии и теории графов. / Под редакцией Кинга Р. М.: Мир.1987. 259с.
- 4. Gutman I., Estrada E. // J.Chem. Inf.Comput.Sci. 1996. v. 36. P.541.
- 5. Шор Б.Статистические методы анализа и контроля качества и надежности. М.:Гос-энергоиздат. 1966. 552c.

## XLOR-ENDİK TURŞUSU N-ALKİLKARBOKSİİMİDLƏRİ SIRASINDA KORRELƏSİYA ANALİZİ

M.S.Salahov, O.T.Qreckina, B.T.Bağmanov

Məqələdə xlorendik turşusuN-alkilkarboksiimidlərinin turşu ionlaşma sabitləri və ərimə temperaturları ilə Viner, Randiç və nəzəri-məlumat əsaslı topoloji indekslər arasında qarşılıqlı əlaqə açıqlanmış, bu indekslərin qabaqcadan təyin etmə imkanları ğöstərilmişdir.

# CORRELATION ANALYSIS IN A SERIES OF N-ALKYLCARBOXYIMIDES OF CHLOROENDIC ACID M.S.Salakhov, O.T.Grechkina, B.T.Bagmanov

An interrelation of acidic ionization constants and melting temperature with values of Winer, Randich topological indices and theoretical-information indices has been described; their predicted capacity in a series of N-alkylcarboxyimides of chloroendic acid established.