УДК 547.222: 541.6

ВИЗУАЛИЗАЦИЯ УСТОЙЧИВОЙ КОНФОРМАЦИИ ПЕРХЛОРПРОПАНА В КОЛЬЦЕГРАННЫХ МОДЕЛЯХ

 1 М.С. Салахов, 1 Б.Г. Багманов, 2 Н.А. Кадырова, 2 М.О. Мамедова 1 Институт полимерных материалов Национальной АН Азербайджана

¹Институт полимерных материалов Национальной АН Азербайджана AZ 5004 Сумгайыт, ул С. Вургуна, 124; e-mail:ipoma@science.az

²Бакинский государственный университет
AZ 1148 Баку, ул. 3.Халилова, 23; e-mail: info@bsu.az

В статье впервые рассматривается кольцегранная модель устойчивой конформации перхлорпропана, изготовленная из гибких полимерных трубочек. Ключевые слова: перхлорпропан, модель Стюарта-Бриглеба

В продолжение наших ранних исследований по визуализации хлоруглеродов C_1 - C_2 [1,2], в данной работе впервые рассматривается описание конформационной особенности перхлорпропана с применением метода кольцегранных моделей, изготовленных нами [1-3] из гибких полимерных трубочек.

Известно [4], что молекула перхлорпропана, в отличие от молекулы пропана, имеет шахматное расположение атомов хлора результате заторможенности вращения обеих углерод-углеродных связей, обусловленных взаимным отталкиванием электронных облаков объемных хлорных атомов, изображенных в виде кольцегранных моделей (рис.1), и поэтому существует в единственной устойчивой конформационной форме (рис.2) представленных Стюартамоделях Бриглеба.

Рис.1. Кольцегранная модель молекулы Cl₂.

Рис.2. Модель Стюарта-Бриглеба устойчивой конформации молекулы октахлорпропана.

В случае же пропана молекула способна находиться в различных конформационных формах (рис.3,4), так как минимальные

объемы водородных атомов слабо препятствуют вращению вокруг углеродных связей.

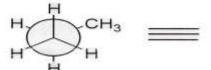

Рис.4

Рис.3

Рис.3.4. Модель Стюарта-Бриглеба молекулы пропана.

Поэтому визуализация такой молекулы кольцегранными моделями имеет мно-

жество вариаций, хотя сохраняется единая правильная тетраэдрическая форма каждого углеродного фрагмента (рис.5).

Ньюменовская графическая форма

Тетраэдрическая модель С₃Н₈

Рис.5. Шаростержневые модели молекулы перхлорпропана в устойчивой конформации.

В случае перхлорпропана происходит удлинение связи С-С (1.657 А°) по сравнению с пропаном (1.513 А°) [5]. Такое удлинение приводит к ослаблению энергии связи, что является причиной реакции хлоринолиза при исчерпывающем высокотемпературном хлорировании

углеводородов C_3 , приводящие к образованию эквимолярных количеств CCl_4 и $CCl_2=CCl_2$ [6,7], а также образованию наиболее устойчивого хлоруглерода гексахлорбензола при пиролизе хлоруглеродов (C_1-C_4) при температуре выше $600\,^0C$ [8].

$$H_{3}C-CH_{2}-CH_{3} \xrightarrow{+8 \text{ Cl}_{2}} CI_{3}C-CCI_{2}-CCI_{3} \xrightarrow{t} CCI_{4} + CI_{2} CI = C \xrightarrow{CI} CI_{2} CI \xrightarrow{CI} CI_{2} CI$$

Таким образом, с одной стороны, ограничение конформационной устойчи0 вости, а с другой – удлинение углеродуглеродных связей приводит к общей нестабильности получающихся хлоруглеродных производных пропана и

позволяет наглядно визуализировать эти свойства в виде кольцегранных моделей и получить ответы на термическую неустойчивость таких молекул при высоких температурах.

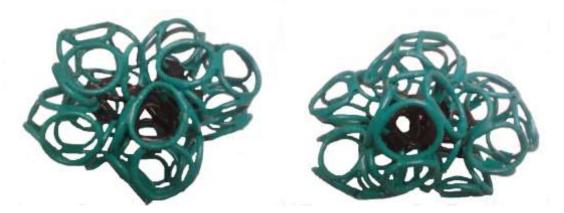


Рис. 6. Кольцегранные модели устойчивой конформации октахлорпропана.

Была рекомендована сборка кольцегранной модели молекулы октахлор-пропана из гибких полимерных трубочек со следующими параметрами: для углерода с R=0,63 A^0 и длиной трубочек 115см с диаметром трубочек ≈ 1 мм, окращенных в

черный цвет путем обмотки изоляционной лентой, а для хлора с $R=1,81~A^0$, длина трубочки 140см, диаметр трубочек ≈ 1 мм, окращенных в зеленый цвет, также путем обмотки изоляционной лентой и стержневых палочек длиной 1см [9].

ЛИТЕРАТУРА

- 1. Салахов М.С., Багманов Б.Т., Гречкина О.Т., Кадырова Н.А.. Кольцегранные модели для визуализации молекул хлоруглеродов. Четыреххлористый углерод. // Химические проблемы. 2010. №3. С.477-479.
- 2. М.С.Салахов, Б.Т.Багманов, О.Т. Гречкина, Н.А.Кадырова. Кольцегранные моде-
- ли для визуализации молекул хлоруглеродов. Гексахлорэтан, тетрахлорэтилен и дихлорацетилен. // Химические проблемы. 2010. №4.С.644-648.
- 3. Salahov M.S., Qədirova N.A. Xlorkarbonların həlqəüzlü modelləri. IV Respublika elmi konfrans BDU. 2010. S.67.

- 4.. Salakhov M.S. "Geometrical structure of chlorcarbons". // Sciens without borders Transations of the International Academy of Sciense HDE. 2005/2006. v.2. p.500-508.
- 5. Мастрюков В.С., Осини Е.Л., Вилков Л.В. Геометрия молекул. //Журн. структ. Химии. 1976. т.17. №1. С.80-85, 86-91.
- 6. Salahov M.S., Bagmanov B.T. C₁- C₃ karbohidrogenlərin qaynar-lay reaktorunda tam xlorlaşdırılması. // IV Elmi-praktiki seminar. Baki. Elm. 2009. S.15-17.
- 7. Салахов М.С., Умаева В.С., Багманов Б.Т. Роль азербайджанских научно-инноваци-

- онных иследований в развитии химической промышленности. // ж. НАНА Новости науки и инновация. 2009. №1.С.83-85.
- 8. Мамедалиев Ю.Г., Гусейнов М.М., Кичиева Д.Д., Мамедов С.М. Получение гексахлорбензола термическим распадом перхлоруглеродов. // Доклады АН Аз.ССр., 1961. т.17. №2. С.109-113.
- 9. Салахов М.С., Мамедова М.О., Кадырова Н.А. Кольцегранная модель для визуализации молекулы октахлорпропана. V Республиканская научная конференция БГУ. 2011. С.115.

PERXLORPROPAN MOLEKULUNUN DAYANIQLI KONFORMASİYASININ HƏLQƏÜZLÜ MODELLƏRLƏ VİZUALLAŞDIRILMASI

M.S.Salahov, B.T.Bağmanov, N.A.Qədirova, M.O.Məmmədova

Məqalədə ilk dəfə olaraq perxlorpropan molekulunun dayanıqlı konformasiyasının çevik polimer borucuqlar vasitəsi ilə hazırlanmış həlqəüzlü modelləri nəzərdən keçirilir. **Açar sözlər**: perxlorpropan, Stuart-Briqleb modeli

VISUALIZATION OF STABLE CONFORMATION OF PERCHLORPROPAN IN RINGHEDRAL MODELS

M.S.Salakhov, B.G.Bagmanov, N.A.Kadyrova, M.O.Mamedova

The article considers for the first time the ringhedral model of the stable conformation of perchlorpropan, made of flexible polymer tubes. **Keywords:** perchlorpropan, Stuart-Brigleb model

Поступила в редакцию 11.09.2011