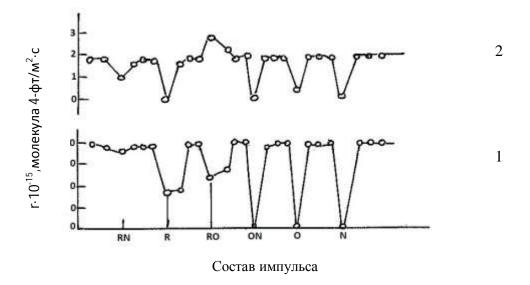
УДК 541.128.13

К ВОПРОСУ О МЕХАНИЗМЕ УЧАСТИЯ КИСЛОРОДА В ОКИСЛИТЕЛЬНОМ АММОНОЛИЗЕ 4-ФЕНОКСИТОЛУОЛА НА ОКСИДНЫХ КАТАЛИЗАТОРАХ

В.Е.Шейнин, З.Ю.Магеррамова, И.А.Гусейнов, Н.И.Гейдарлы, Т.Ч.Алиева, А.М.Сардарлы

Институт химических проблем им. М.Ф.Нагиева Национальной АН Азербайджана Аз.1143, Баку, пр.Г.Джавида 29; e-mail:itpcht@itpcht.ab.az

Импульсным методом проведено изучение раздельного взаимодействия толуола и аммиака с поверхностью оксидного Bi-V-Sb-Cr-K-катализатора в реакции окислительного аммонолиза 4-фенокситолуола. Результаты исследования показали, что образование 4-феноксибензонитрила происходит по окислительно-восстановительному механизму. Продукты глубокого окисления 4-фенокситолуола образуются как по окислительно-восстановительному, так и ассоциативному механизму.


Ключевые слова: окислительный аммонолиз, 4-фенокситолуол, 4-феноксибензонитрил, оксидные катализаторы.

Известно, что мягкое окисление углеводородов, в том числе ароматических в соответствующие карбанионные и карбоксильные соединения на оксидных катализаторах чаще всего протекает по так называемому стадийному окислительновосстановительному механизму, суть которого сводится к попеременному восстановлению углеводородов и реокислению кислородом поверхности контакта [1-3].

В настоящей работе сделана попытка рассмотреть реакцию окислительного аммонолиза 4-фенокситолуола на нанесенном на γ -Al₂O₃ *Bi-V-Sb-Cr-K*-оксидном катализаторе с точки зрения возможности реализации подобного механизма [4,5]. Основными признаками протекания реакции по окислительно-восстановительному механизму является участие кислорода катализатора в реакции, совпадение раздельно измеренных скоростей восстановления катализатора и его реокисления в стационарном состоянии со скоростью каталитической реакции, образование с одинаковой селективностью одних и тех же продуктов в процессе восстановления и катализа [6].

На рисунке приведены результаты раздельного взаимодействия импульсов 4-фенокситолуола и аммиака с поверхностью нанесенного на γ -Al₂O₃ Bi-V-Sb-Cr-K-катализатора.

4-феноксибензонитрил Видно, что всех 4-фенокситолуолобразуется во содержащих импульсах (RN, RO, R) и не выделяется при пуске на стационарную поверхность контакта импульсов кислорода (O) и аммиака (N) (R, O, N означают наличие в реакционной смеси углеводорода, кислорода и аммиака). 4-феноксибензонитрил образуется, по-видимому, путём взаимодействия 4-фенокситолуола с адсорбированным аммиаком, свидетельствует наличие продуктах реакции 4-феноксибензонитрила в случае импульсов R, RO. Однако при этом заметно стационарное нарушается состояние катализатора, характеризующееся опредесодержанием адсорбированных лённым аммиака и углеводорода со степенью восстановления 3.0-4.5% монослоя. Из данных рисунка видно, что после пуска импульсов R и RO скорость образования 4-феноксибензонитрила в последующем существенно импульсе RON стационарной. В то же время этого не наблюдается при пуске на стационарный импульсов, катализатор содержащих аммиак (RN, ON, N). Очевидно, непреусловием сохранения стациоменным нарного состояния катализатора является наличие аммиака в реакционной смеси.

Скорость образования 4-феноксибензонитрила (1) и оксидов углерода (2) при взаимодействии со стационарным катализатором отдельных компонентов реакционной смеси при 320^0 (точки без указания импульсов – смесь RON)

Продукты глубокого окисления 4фенокситолуола (СО2, СО) образуются частично в восстановительных импульсах (RN, R), т.е. путём взаимодействия углеводорода с кислородом поверхности окислительно-восстановиконтакта тельному механизму. Они же выделяются и окислительном импульсе (O),указывает на реализацию ассоциативного механизма сопряжённого переноса.

Совпадение суммы скоростей глубокого окисления 4-фенокситолуола в импульсах RN и О со скоростью аналогичного процесса в каталитическом импульсе RON говорит о том, что эти механизмы являются основными. Вклад ассоциативного механизма, составляющий в изученных условиях 30-50%, уменьшается с ростом температуры реакции (таблица).

Сопоставление скоростей окислительного аммонолиза и глубокого окисления 4-фенокситолуола при катализе и восстановлении Bi-Sb-V-Cr-K/ γ -Al $_2$ O $_3$ -катализатора в стационарном состоянии

T,°C	Состав	Конверсия	r 10 ⁻¹⁵ , молекул		Селективность, %	
	импуль-	4-фенокси-	$C_6H_5OC_7H_4N, m^{-2}c^{-1}$			
	ca	толуола %	C ₆ H ₅ OC ₇ H ₄ N	CO ₂ +CO	C ₆ H ₅ OC ₇ H ₄ N	CO ₂ + CO
275	RON	74.6	20.8	2.66	93.1	6.9
	RN	53.5	14.6	1.76	93.5	6.5
	RON	74.2	20.9	2.55	93.4	6.6
325	RON	73.5	39.3	6.12	90.8	9.2
	RN	68.8	35.5	5.25	91.4	8.6
	RON	72.1	38.5	6.05	90.7	9.3
400	RON	77.7	194.5	44.42	85.5	14.5
	RN	73.7	183.4	30.6	90.0	10.0
	RON	76.8	192.5	40.54	86.7	13.3

Высокая скорость полного окисления, значительно превосходящая стационарную, наблюдается при взаимодействии с катализатором импульса RO (рисунок). В этом случае также имеет место нарушение

стационарного состояния контакта, связанное с уменьшением степени восстановления поверхности. При пуске импульса RO, имеющего избыток кислорода, происходит окисление поверхности

катализатора и появление на ней слабосвязанного кислорода с энергией связи менее 260-280 кДж/моль, характеризующегося повышенной реакционной способностью в отношении глубокого окисления.

Настоящая работа и обзор литературного материала позволяют констатировать, что образование нитрилов происходит путём последовательного взаимодействия углеводорода и аммиака с кислородом поверхности кислорода. Функции кислорода газовой фазы сводятся чаще всего к окислению восстановленных мест по известной схеме:

$$O_{2(ra3)} \rightarrow O_{2(aдc)} \xrightarrow{e} O_2 \xrightarrow{e} 2O_{(peii)}.$$

Такая последовательность принимается большинством исследований[7].

В целом же, процесс реокисления оксидного катализатора, в отличие от восстановления, изучен слабо. Возможно, это объясняется тем, что в большинстве случаев в стационарных условиях скорость реокисления не лимитирует каталитический процесс.

Таким образом, результаты исследования показали, что образование 4-феноксибензонитрила протекает по стадийному окислительно-восстановительному механизму. Продукты глубокого окисления 4-фенокситолуола образуются как по окислительно-восстановительному, так и ассоциативному механизму.

ЛИТЕРАТУРА

- 1. Голодец Г.И. Гетерогенно-каталитическое окисление органических веществ. Киев: Наук.думка. 1978. 376 с.
- 2. Марголис Л.Я. Окисление углеводородов на гетерогенных катализаторах. М.: Химия. 1977. 328 с.
- 3.Соколовский В.Д. В кн.: Парциальное окисление органических соединений. М.: Наука. 1985. С. 99-119.
- 4. Р.Г.Ризаев, В.Е.Шейнин, З.Ю.Магеррамова. Окислительный аммонолиз 4-фенокситолуола в 4-феноксибензонитрил в нестационарном режиме. // Азерб. хим. журнал. 2001. №4. С 14-18.
- 5.В.Е.Шейнин, З.Ю.Магеррамова, И.А.Гусейнов, Н.Ю.Литвишков. Исследование реакции окислительного аммонолиза 4-фенокситолуола над V-Sb-γAl₂O₃ оксидным катализатором в импульсном режиме. // Хим. проблемы. 2009. №1. С.34-40.
- 6. Соколовский В.Д. В кн.: Теоретические проблемы катализа. Новосибирск.: Ин-т катализа СО АН СССР. 1977. С. 33-35.
- 7. Садовский А.С., Гельбштейн А.И.. В кн.: Парциальное окисление органических соединений. Т.19. Проблемы кинетики и катализа. М.: Наука. 1985. С. 119-131.

OKSİD KATALİZATORLAR ÜZƏRİNDƏ 4-FENOKSİTOLUOLUN OKSİDLƏŞDİRİCİ AMMONOLİZİNDƏ OKSİGENİN İŞTİRAKİ MEXANİZMİ HAGGINDA

V.Y.Şeynin, Z.Y.Məhərrəmova, İ.A.Huseynov, N.İ.Heydərli, T.Ç.Əliyeva, A.M.Sərdarlı

4-fenoksitoluolun oksidləşdirici ammonoliz reaksiyasında toluolun və ammonyakın ayrı-ayrılıgda Bi-V-Sb-Cr-K-oksid katalızatorun səthi ilə qarşılıglı təsiri impuls üsulu ilə tədqiq edilmişdi. Tədqiqatların nəticələri 4-fenoksibenzonitrilin alınmasının oksidləşmə-reduksiya mexanizmi ilə getdiyini göstərdi. 4-fenoksitoluolun dərin oksidləşmə məhsulların alınması isə həm oksidləşmə-reduksiya, həm də assosiativ mexanizmi ilə gedir.

Açar sözlər: oksidləşdirici ammonoliz, 4-fenoksitoluol, 4-fenoksibenzonitril, oksid katalizatorlar.

ON MECHANISM OF OXYGEN PARTICIPATION IN OXIDING AMMONOLYSIS OF 4-PHENOXYTOLUENE ON OXIDE CATALYSTS

V.E.Sheynin, Z.Y. Magerramova, I.A.Huseynov, I.Heydarly, T.Ch.Aliyeva, A.M.Sardarly

Using the impulse method, researchers explored a separate interaction of toluene and ammonia with a surface of oxide Bi-V-Sb-Cr-K-catalyst in the reaction of oxidizing ammonolysis 4-phenoxitoluol. Results of the research showed that the formation of 4-phenoxibenzonitryl occurs according to the oxidizing-restoration mechanism. Products of deep oxidation of 4-phenoxitoluene are formed due to oxidizing-restoration and associative mechanism.

Keywords: oxidizing ammonolysis, 4-phenoxytoluene, 4-phenoxybenzonytril, oxide catalysts.

Поступила в редакцию 30.09.2012.