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Abstract: The growing global demand for clean and sustainable energy sources has intensified interest in
green hydrogen as a carbon-free fuel. Among the various pathways for green hydrogen generation,
photoelectrocatalysis (PEC) has gained significant attention due to its unique ability to directly convert solar
energy into chemical energy through water splitting. This review provides a comprehensive overview of recent
progress in PEC-driven hydrogen production.

Key classes of photoelectrocatalysts—including metal oxides, chalcogenides, perovskites, and emerging two-
dimensional materials—are analyzed with respect to their optical absorption, band alignment, stability, and
catalytic activity. Challenges such as limited light absorption, rapid charge recombination, corrosion, and
scalability constraints are critically discussed. Finally, future directions for achieving commercially viable
PEC hydrogen generation are outlined, earth-abundant catalysts and systems engineering approaches.
Overall, this review underscores the potential of photoelectrocatalysis as a promising pathway for large-scale
green hydrogen production powered by sunlight.
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Introduction

Solar photocatalysis and to light (hv > Ey), electron/hole pairs (e /h") are

photoelectrocatalysis have emerged as highly
promising approaches for achieving clean, cost-
effective, and sustainable renewable energy
generation, as well as enabling efficient removal
of pollutants [1].

Photoelectrocatalysis (PEC) is a new
technology designed to overcome the limitations
of traditional photocatalysis. It involves
immobilizing a photocatalyst on a conductive
substrate, which simultaneously functions as an
electrode [2, 3, 4]. It is a powerful method
obtained from the combination of heterogeneous
photocatalysis and an electrochemical process.
The process involves utilizing a semiconductor
that is exposed to light with energy equal to or
greater than its band gap energy while
simultaneously applying a gradient potential
across the semiconductor [4]. The basic concept
is that when a semiconductor surface is exposed

generated by promoting an electron from the
valence band (lower energy level) to the
conduction band (higher energy level). Electrons
are guided toward the counter electrode under
positive potential in n-type materials to reduce
the recombination of electron-hole pairs, which
is significant due to their short lifetimes. When
immersed in an electrolyte, adsorbed water
molecules and/or hydroxyl ions react with holes
in the valence band to form hydroxyl radicals
(#OH), which are a powerful oxidizing agent
(+2.80 V) [5-8]. Compared to photocatalysis, the
FEC process shows higher efficiency and
produces a larger number of holes [2]. The
immobilization of the photoelectrocatalyst is a
significant advantage of the FEC process.

As a rule, photocatalytic processes mainly
include three main stages: 1) generation of
electron-hole pairs by absorption of photons with
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higher energy than the forbidden zone (Eg) of
photocatalysts (photoelectrodes), 2) separation
of charges and their migration to the surface of
the photocatalyst, and 3) reduction/oxidation
reaction occurring on the surface of the
photocatalysts [9-11].

Currently, the transition to solar energy appears
highly promising, as solar power generation does
not pollute the environment or disrupt the Earth’s
overall energy balance. There are several possible
applications of solar energy, including serving as
a heat source for building heating [12]; heating
and desalination of water [13, 14]; generating
electricity with heat engines [15, 16]; and direct
conversion to electricity using semiconductor
converters [17, 18]. The sun's periodic activity
necessitates storing it in power plants to provide
electricity during periods without sunlight. One
of the most efficient methods of energy storage
is to produce hydrogen, which can later be used
in fuel cells to generate electricity. From this
perspective, one should consider either the
photoelectric conversion of light energy into
electrical energy followed by water electrolysis
with sufficiently high efficiency, such as high-
temperature or solid-polymer electrolysis, or
photoelectrochemical processes, in which
hydrogen and oxygen are formed on
photosensitive electrodes made of n- and p-type
semiconductors due to charge carriers generated
by light and separated by the field of the space
charge region.

A crucial challenge for
photoelectrochemical water splitting is the
development of corrosion-resistant

semiconductor electrode materials with a band
gap that matches the energy required for water
decomposition. Although the process of water
photoelectrolysis has been studied by many
researchers, systems that meet the requirements

have not yet been found. There are
semiconductor materials that are acceptable at
least in terms of certain  individual

characteristics, such as stability, band gap width
(Eg), flat band potential (¢m), etc. [19].

For effective water photoelectrolysis, it is
essential to eliminate all side effects, especially
photocorrosion of the semiconductor electrode.
This requires that the condition @°H.0/0. < @ dec,p
(for an n-type semiconductor) or ¢°H./H:0 < (¢°dec,n
(for a p-type semiconductor) be satisfied [19].

Therefore, the following conditions must

be satisfied for water photoelectrolysis to

proceed effectively [19]:

1. The band gap width must exceed the
difference in electrochemical potentials
between the hydrogen and oxygen reactions
in water (1.23 eV); in other words, Eg >
Fra/m20 - Fr20/02;

2. The energy of the light quanta must be
greater than the band gap, ho > Eg;

3. The flat band potential of an n-type
semiconductor should be more negative than
the hydrogen electrode potential, while that
of a p-type semiconductor should be more
positive than the oxygen electrode potential.

Currently, various photoelectrodes are
used for photoelectrocatalysis. Selecting the
appropriate photoanode and/or photocathode
material is the most critical aspect of this process.

An ideal photoanode and/or photocathode for

photoelectrochemical water splitting requires

semiconductor materials with the following

characteristics [20]:

1) Suitable band gap energy and energy
band positions. Natural sunlight consists of
5% UV (300400 nm), 43% visible (400—
700 nm), and 52% infrared radiation (700—
2500 nm) [20]. Therefore, to improve
efficiency, the semiconductor must
significantly absorb light in the visible
region, a property determined by its band
gap. Since the proton reduction potential is 0
V vs NHE and the O2/H20 potential is 1.23
V NHE (at pH = 0), the theoretical minimum
band gap for water splitting requires incident
photons with at least 1.23 eV of energy,
which corresponds to a light wavelength of
approximately 1100 nm. However, taking
into account thermodynamic energy losses
(0.3-0.4 eV) occurring during charge carrier
transport and the overpotential required for
acceptable surface reaction kinetics (0.4-0.6
eV), a minimum band gap of ~1.8 eV is
required, which corresponds to light
absorption at approximately 700 nm. The
upper limit of the band gap energy is 3.2 eV
due to the rapid decrease in sunlight intensity
below 390 nm, consistent with the solar
spectrum. Thus, for a single semiconductor
photoelectrode, band gap energy between

1.9 eV and 3.2 eV is desirable to achieve
significant photovoltage [20].
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Efficient separation and transport of
charge carriers in a semiconductor.
Efficient separation and transport of charge
carriers in a semiconductor. Rapid charge
recombination is a primary cause of low
solar-to-hydrogen conversion efficiency;
therefore, a strategy is required to promote
the efficient separation and transport of
charge carriers, which depend on both the
intrinsic  properties (hole and electron
mobility) and  extrinsic  properties
(crystallinity, nanostructure) of the material
[11].

Strong catalytic activity and stability.
Sufficiently fast surface reaction kinetics can
prevent surface charge accumulation, which
would otherwise lead to -electron-hole
recombination. Photocorrosion poses a
significant challenge for many
semiconductor candidates used in water
splitting, especially metal sulfides, and
occurs when photogenerated holes or
electrons, instead of driving water oxidation
or reduction, react with and degrade the
photocatalyst itself. These photocorrosion
reactions are influenced by the relative

In addition, developing a device that is both

efficient and stable for converting solar energy

positions of the semiconductor band edges
and their corresponding decomposition
potentials. Anodic photocorrosion may occur
if the anodic decomposition potential (Epd)
exceeds the valence band potential of the
semiconductor. Conversely, cathodic
photocorrosion may occur if the cathodic
decomposition potential (gnd) is lower than
the conduction band potential of the
semiconductor. Metal oxides such as BiVO4
and ZnO, as well as metal sulfides like MoS:
and CdS, can be susceptible to anodic
photocorrosion depending on the pH of the
electrolyte, since the actual decomposition
potential values are pH-dependent. However,
conventional photoanode materials such as
TiO:. and Fe20s, despite having water
decomposition potentials above their valence
band potentials, are thermodynamically
stable because their decomposition reactions
proceed at very slow kinetic rates [11, 19].
Furthermore, for practical applications,
photoelectrode materials should be low-cost and
composed of elements that are abundant on
Earth. This is essential to support the case for
economically scalable solar-to-fuel devices [11].

~ photocathode

photoancde  membrane

Fig. 1. Schematic representation of some photoelectrochemical devices: a) photoanode with metal
cathode, b) photocathode with metal anode, c¢) wire tandem photoelectrochemical cell with
photoanode and photocathode, and d) wireless tandem photoelectrochemical device [22, 23]

into hydrogen remains a significant challenge
[11, 20]. Although recent reports have shown
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water splitting devices achieving 30% efficiency
by coupling a photovoltaic cell with an
electrolyzer [21], current research is focused on
developing direct, low-cost, and highly water
splitting through photoelectrochemical cells.

This is due to two main driving forces.
First, a low voltage is required to control the
photoelectrochemical decomposition of water,
which promises a higher efficiency of converting
solar energy into hydrogen, despite the fact that
several photovoltaic cells are usually used in
series to achieve the minimum potential (3.0 V,
required by the electrolyzer in the indirect path).
Secondly, photoelectrochemical decomposition
of water requires a much simpler and more
compact design with fewer components (wires,
electrodes, reactor, etc.) [11].

The primary components of
photoelectrochemical devices for water splitting
are semiconductor light-absorbing

photoelectrodes, an electrolyte, and a separation
membrane [11].

Typical photoelectrochemical systems may
feature a single photoelectrode (photocathode or
photoanode) paired with a counterelectrode, or a
tandem structure incorporating both a
photoanode and a photocathode to enhance
photopotential and light absorption (Fig. 1) [22-
25].

The water decomposition reaction is a
process that requires a minimum Gibbs free
energy of 237 kJ-mol™ [10]. As shown in Fig. 2,
there are three main physical and chemical
processes involved in the full reaction of the
photoelectrochemical decomposition of water.

The first step of the process involves the
absorption of light from a calibrated source—
commonly simulating solar irradiation (e.g., 100
mW-cm2)—by a semiconductor photoelectrode.
In typical photoelectrochemical systems, an n-
type semiconductor functions as the photoanode,
whereas a p-type semiconductor serves as the
photocathode. Upon absorption of photons with
energies exceeding the semiconductor band gap
(Eg), electron—hole pairs are generated: electrons
are promoted to the conduction band, while holes
remain in the valence band.

For water oxidation to proceed, the valence
band edge of the semiconductor must be
positioned at a potential more positive than the
02/H20 redox potential (1.23 V vs. the normal
hydrogen electrode, NHE, at pH = 0).
Conversely, for water reduction to occur, the
conduction band edge must be located at a
potential more negative than the H*/H. redox
potential (0 V vs. NHE at pH = 0).

vV®

4h+

Bias

hv>Eg

4e-

(@/@)y W= .

amoseaormzre OO /o o

Conductive n-type electrolyte Metal

Substrate semiconductor

Fig. 2. Schematic of a simple photoelectrochemical cell based on an n-type semiconductor
photoanode electrically connected to a metal counter electrode under external influence, maintained
under alkaline conditions. At the photoanode, the reaction 4OH™ + 4H* — 2H:0 + O: occurs and
because of the conduction band position is positive, a voltage is required to accelerate the reduction
of water effectively. The main processes include: (I) light absorption; (II) carrier separation and
transport; and (II) surface redox reactions [11]
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Note that additional voltage is required to
compensate for energy losses associated with the
movement of photoholes through the space charge
region, as well as the transfer of electrons through
the external circuit to the counter electrode (such
as platinum). The second process is the separation
and transport of photogenerated electron-hole
pairs. During these steps, charge carriers may
recombine either within the bulk of the material or
at its surface, and therefore, both efficient charge
separation and high charge carrier mobility are
desirable. The last process is the surface reaction,
where oxidation-reduction reactions occur to
break down water. Both an appropriate charge
carrier potential and favorable kinetics of reaction
are essential for efficient water splitting [11].

Currently, great attention is being paid to
increasing both the efficiency of solar-to-
hydrogen conversion and its long-term
operational stability. The highest solar-to-
hydrogen conversion for without applying
external voltage water splitting is 19.3% and is
achieved with this multi-junction monolithic 11—
V semiconductor photoelectrochemical device
[21, 22]. Despite this significant milestone, the
high cost of III-V semiconductor materials has
limited their commercial viability. In contrast,
binary metal oxides (Fe:0s, WOs, Cu0),
chalcogenides (CdS, MoS:, WSe:), oxynitrides
(TaON, LaTiO:N), multicomponent compounds
(BiVOas, Fe TiOs, NiMoO4), and carbon-based
materials have been extensively studied as
inexpensive, efficient, and reliable
photoelectrocatalysts [26-28].

The primary challenges to address involve
both system configurations and material
properties. Typical problems with the latter
include limited light absorption, high carrier
recombination rates, slow charge transport at the
semiconductor-liquid interface, low photocurrent
density, limited efficiency, poor stability, and
photocorrosion. All these aspects are serious
obstacles to the development of effective devices
[29, 30]. In this context, material selection is a
game-changer, as it considers not only technical
limitations but also geopolitical availability and
fluctuating market prices. Strategies for
increasing activity and stability are based on
adapting the semiconductor structure through
doping, surface modification with defects or
functional  groups, nanostructuring, and
heterojunction formation [31-33].

Photoelectrodes for efficient
photoelectrocatalytic hydrogen production can
be obtained by various methods [34]: one-stage
hydrothermal synthesis [35-37], the
solvothermal method [38], sulfidation and
selenization [39], the free intercalation method
[40], the sequential ion layer adsorption and
reaction  (SILAR)  method [41], the
electrodeposition =~ method  [42-43], the
photoreduction method [44], chemical vapor
deposition (CVD) [45], the sequential surface
modification method [46], and microwave-
assisted synthesis [47-50].

Photoelectrodes. To date, dozens of
semiconductor materials have been investigated
as photoelectrodes for photoelectrochemical
water splitting. The majority of these materials
are n-type semiconductors, while only a limited
number exhibit p-type conductivity. However,
none of the studied materials simultaneously
satisfy the full set of requirements necessary for
efficient solar-driven water photoelectrolysis. In
this review, attention is focused on
semiconductor materials that have demonstrated
at least partial suitability as photoelectrodes.
Among the key electrode requirements, the
development of corrosion-resistant
semiconductor anodes with a band gap
appropriately matched to the thermodynamic
energy required for water decomposition is of
particular importance for photoelectrochemical
applications. Although photoelectrochemical
water splitting has been intensively studied in
recent years, no material system fully meeting all
performance criteria has yet been identified and
research in this area remains ongoing.
Nevertheless, several semiconductor materials
exhibit acceptable photoelectrochemical
characteristics in certain aspects, such as
chemical stability, band gap width (Eg), and flat-
band potential (¢n3), making them promising
candidates for further investigation [19].

For this reason, at present, semiconductor
materials capable of converting solar energy into
chemical energy are divided into two groups:
semiconductors that are sufficiently stable in
aqueous electrolyte solutions but have a
maximum photosensitivity not in the visible but
in the ultraviolet region of the spectrum (TiOz,
WOs3, SnO2, etc.); and semiconductors that have
a maximum photosensitivity in the visible region
of the spectrum but a minimum stability in
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aqueous electrolyte solutions (CdS, CdSe, CdTe,
GaAs, GaP, InP, etc.) [19].

As is  known, photoanodes and
photocathodes have different applications.
A photoanode is an electrode that

participates in photoelectrochemical processes,
where it acts as an anode (positive electrode) and
is activated by light. A photoanode is an anode
on the surface of which, under the influence of
light, oxidation reactions occur, usually
involving water or other substances, resulting in
the release of electrons. The photoanodes are
made of semiconductor materials. Under the
influence of light, electron-hole pairs are formed
in the semiconductor; the electrons leave through
the external circuit, and the holes remain and
participate in the oxidation of water or other
substances on the surface of the photoanode. In a
photocatalytic water splitting setup, light falls on
a photoanode, water on the surface of the
photoanode is oxidized to form oxygen, and
electrons flow through a circuit to the cathode,
where protons are converted to hydrogen.

Photoelectrodes based on TiO: for water
decomposition have been intensively studied
since 1972 due to many favorable properties
[11]. The first is that they are composed of non-
toxic elements common in the earth and are also
photochemically stable in both highly acidic and
highly alkaline conditions [51, 52]. TiO2 is a
corrosion-resistant oxide semiconductor that has
various crystalline modifications — usually rutile,
less commonly anatase and brookite.

However, due to its wide band gap (3.2 eV
for anatase and 3.0 eV for the rutile phase), only
about 5% of the solar spectrum (primarily UV
radiation) can be absorbed. This results in a very
low maximum theoretical solar-to-hydrogen
energy conversion efficiency (n = 1.3% for
anatase and 2.2% for rutile TiO2) [11]. Over the
past decade, many attempts have been made to
dope TiO: with anions or cations to extend its
working range into the visible region, thereby
improving overall absorption while maintaining
its high stability and low cost [3, 53]. The valence
band of TiO: can be modified by introducing
non-metallic species such as carbon or nitrogen
to form states in the middle of the band gap [54],
and the conduction band can be modified by
forming donor states below it through doping
with 3d transition metal ions. Since there is no
fundamental change in the band gap for these

materials in most examples, no significant
enhancement of water decomposition activity in
the visible range was observed. Although doping
can broaden light absorption into the visible
range, the optical absorption remains moderate
above A > 450 nm. Recently, the authors of [55]
developed a new strategy to synthesize a
disordered TiO: nanophase by incorporating
dopants through the hydrogenation of TiOz
nanocrystals. The prepared hydrogenated TiO: is
black in color, corresponding to a band gap
energy of 1.0 eV, compared to the typical 3.30
eV for pure TiOz, and thus promises much higher
solar-to-fuel conversion efficiency [56]. As
shown by studies using electron spectroscopy for
chemical analysis, Ti*" ions in the TiO: lattice,
which act as electron donors, are re-oxidized to
Ti** during the oxygen photoevolution process,
and the oxygen vacancies are filled, and the
titanium oxide becomes stoichiometric. In
addition, TiOz titanium-containing materials are
also used as photoanode materials for converting
solar energy into hydrogen.

Fe;03 (hematite) is a promising photoanode
material owing to its good chemical stability, low
toxicity, low cost, and high natural abundance. In
addition, it has a band gap value of 1.9 to 2.32 eV,
which allows it to absorb visible light, which
corresponds to the maximum theoretical efficiency
of converting solar energy into hydrogen
[57]. Hematite also has some disadvantages:

e short lifetime of charge carriers of the
order of picoseconds due to rapid
recombination of charge carriers in the
volume;

e relatively low absorption coefficient
(about 10° cm™), requiring a film
thickness of at least 400-500 nm for
optimal light absorption;

e slow mobility of minority charge carriers
(holes) (approximately 0.2 cm?V 's™),
which results in a very short hole diffusion
length of 2—4 nm;

e poor water oxidation kinetics, resulting in
high recombination rates on the surface
due to hole accumulation [58].

To overcome these limitations, several
strategies have been applied to improve the
activity of hematite-based photoelectrodes [59].
Firstly, it has been shown that high concentration
doping with various elements such as Si, Ti and
P improves the electron conductivity in hematite.
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In this regard, Si-doped hematite nanocrystalline
films can exhibit high photoelectrochemical
performance with a photocurrent density of at
least 2.7 mA cm 2 at 1.23 V compared to a
normal hydrogen electrode under irradiation by a
single AM 1.5G sun [59]. In addition,
introducing thin metal oxide sublayers or
overlayers on a-Fe:0s significantly improves its
photoelectrochemical activity by enhancing
surface-state passivation and increasing the
concentration and mobility of charge carriers [60,
61]. However, recent studies report a benchmark
photocurrent of 4.68 mA cm™ at 1.23 V (vs. the
normal hydrogen electrode) and a solar-to-
hydrogen conversion efficiency of about 0.55%
for hematite. These results were achieved using a
vertically grown hematite nanosheet film
modified with Ag nanoparticles and a Co—Pi
cocatalyst. Despite this progress, much more
work is needed to improve the solar-to-hydrogen
conversion performance, considering that the
material's limitations are fairly well understood
[60, 62-63].

SrTiOs is the only metal oxide that can
decompose water without assistance in a two-
electrode system [64]. The band gap of this
titanate is 3.2 eV, and because of this large band
gap, its photo-conversion efficiency is below 1%.
To enhance the efficiency, the authors
investigated the spectral sensitization of SrTiOs
photoanodes using several ruthenium (II)
complexes [65-67].

BaTiOs3 is a common perovskite oxide with
a band gap energy of about 3.2 eV and has the
ability to decompose water into hydrogen and
oxygen to its appropriate position in the
conduction and valence bands [68, 69]. Electrons
with high reducing power in the conduction band
and holes with sufficient oxidizing power in the
valence band are usually required for efficient
photocatalytic reactions [70, 71]. Due to its
unique physical and chemical properties, many
studies have been conducted to overcome the
limitations that hinder the improvement of
photocatalytic efficiency [69, 72-73]. Among the
factors influencing the photocatalytic activity of
BaTi0:s, the relatively high recombination rate of
photoexcited electrons and holes is the primary
cause of the low photocatalytic efficiency [74,
75]. Thus, some effective approaches have been
explored to promote the separation and migration
of photogenerated carriers, such as noble metal

loading, ion doping, heterogeneous structure, and
size and morphology control. Thus, some
effective approaches have been explored to
promote the separation and migration of
photogenerated carriers, such as noble metal
loading, ion doping, heterogeneous structure, and
size and morphology control [68, 70, 76-79].

Currently, photoanodes based on II1I-V
compounds are the most promising [59, 71, 80-
81].

BiVO4 is an n-type semiconductor
composed of relatively common elements on
Earth [11]. It has a direct band gap of 2.4 eV with
a conduction band position close to 0 V
compared to NHE (pH = 0) and a valence band
position around +2.4 eV compared to NHE (pH
= 0) described in [82]. Following this discovery,
BiVO4 was also used as a photoanode for
photoelectrochemical water decomposition, a
progress that was reviewed in detail by other
researchers [83]. The theoretical maximum
photocurrent and solar-to-hydrogen conversion
efficiency of BiVOs are 7.4 mA cm ™2 at 1.23 V
compared to RHE and 9.1%, respectively. The
efficiency of BiVOu is limited by several factors.
Rapid charge carrier recombination remains a
major challenge due to the short electron
diffusion length (only about 10 nm). However,
this diffusion length can be significantly
increased to approximately 300 nm by doping
with Mo or W [84]. Other authors [85]
introduced gradient tungsten doping, starting
with 1% W at the BiVOs electrolyte interface, to
enhance charge carrier separation efficiency.
Moreover, the carrier separation efficiency
increases to about 60% at 1.23 V vs. RHE,
compared to about 38% for uniformly doped
BiVOa.. This improvement is attributed to the
expansion of the band bending region throughout
the entire thickness of the BiVO. photoanode,
thereby enhancing carrier separation. In detail,
when W-doped and undoped BiVOs are brought
into contact, the Fermi energy levels are balanced
by electron transfer from the W-doped portion to
the undoped portion of the material. A depletion
layer then forms at the interface between the W-
doped and undoped BiVOs4[85].

Gallium arsenide (GaAs) is an important
semiconductor with a direct band gap of 1.42 eV
that is commonly used to produce devices such
as infrared emitting diodes, laser diodes,
microwave integrated circuits, and photovoltaic
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cells [57, 86-90]. GaAs has a high electron
mobility that exceeds that of silicon, which
makes it suitable for high-speed applications
such as microwave devices, high-speed
transistors, and integrated circuits (ICs).

The authors in [91] reported that applying
a TiO: film onto GaAs effectively suppresses
photocorrosion while preserving the system’s
sensitivity to visible light. In addition, it was
found that the GaAs-based photocathode
achieves higher quantum efficiency and a longer
lifetime under 633 nm monochromatic light
illuminations, an advantage that can hardly be
obtained by simply adjusting the intensity of
white light [92, 93].

GaAs has been widely used in recent years
as a high average current and polarized electron
source in several accelerators and light sources.
Their applications have also been found in
photomultiplier tubes, high-performance image
intensifiers, low-energy electron microscopes
(LEEMs), and spin low-energy electron
microscopy (SPLEEMs) [94-98]. GaAs
photocathodes also offer a number of advantages
over other cathodes, including high spin
polarization in strained layer structures and very
low heat dissipation under certain conditions [99-
106]. The main limitation of GaAs
photocathodes lies in their short operational
lifetime. Their quantum efficiency degrades
relatively quickly even under a high vacuum
(UHV) system with a pressure of 107'° mbar,
even if they are not operated under high voltage
and/or powerful illumination [96, 107-109]. The
dark lifetime of the quantum efficiency, defined
as the time for the quantum efficiency to decay to
1/e of its initial value without electron emission
or high voltage applied to the cathode, ranges
from several tens to several hundred hours in the
best cases, as reported in multiple studies [107,
109-112]. The predominant mechanism behind
for this degradation is contamination of the
cathode surface by residual gases within the
vacuum system [96, 108, 109, 113-116]. To
eliminate this problem, a clear understanding of
the influence of different gas types on the
quantum efficiency of photocathodes is required.

Gallium phosphide (GaP) is a III-V
binary semiconductor with a direct band gap of
2.26 eV and therefore absorbs a significant
portion of the energy from sunlight [117-119].
GaP is wuseful in certain optoelectronic

applications. It is commonly used in red, orange,
and green light-emitting diodes (LEDs). One of
GaP's notable advantages is its high thermal
conductivity, which allows for better heat
dissipation in electronic devices. Although it
does not exhibit the same level of efficiency as
materials like GaAs in  high-frequency
applications, GaP is used as a substrate material
for other I1I-V semiconductors such as GaAs and
InP to form heterostructure devices. It is also
used in photonic integrated circuits and is
sometimes used in combination with other
semiconductors to develop desired electronic or
optical properties. As is known, for the
photodecomposition of water in the absence of an
external voltage, it is necessary that the potential
of the flat zones of the photocathode material be
more positive than the potential of the oxygen
electrode. Unfortunately, in the case of gallium
phosphide, this condition is not met. Therefore,
to carry out photoelectrolysis of water, a
significant voltage from an external source must
be applied to a cell with a GaP photocathode and
a platinum anode. This significantly reduces the
energy conversion efficiency. Also, the stability
of the GaP photocathode under long-term
operation conditions proved satisfactory. There
is no visible damage to the electrode observed,
and gallium does not dissolve in significant
amounts. However, the photocurrent gradually
decreases over time. In addition to water
photodecomposition, the GaP cathode has also
been  proposed for use in  other
photoelectrochemical reactions [19].

Cadmium chalcogenides. Theoretically,
photocatalytic evolution of H2 and O: upon
visible light irradiation can be achieved on pure
CdS due to its relatively narrow band gap of 2.4
eV and favorable conduction band-edge
positions of -0.7 V and valence band position of
+1.7 V relative to NHE (pH = 0) [11]. Although
the material exhibits a long charge -carrier
diffusion length in the micrometer range, its poor
water oxidation kinetics lead to accumulation of
photogenerated holes on the surface, resulting in
severe anodic photocorrosion [120-122]. To
mitigate this issue, hole scavengers such as S*-
and SOs* are typically employed when using
CdS for photocatalytic water reduction. Similar
to CdS, II-VI semiconductors (e.g., CdS, CdTe,
CdSe, and ZnTe) also require stabilization or
protection strategies when used as photoanodes
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for photoelectrochemical water splitting [123-
132]. Surface passivation layers have been
widely used to reduce charge recombination at
surface states, increase reaction kinetics, and
protect the semiconductor from chemical
corrosion [ 133]. CdS photoanodes modified with
TiO2 nanoparticles have also been demonstrated
to enable long-term hydrogen production, and
CdS photoanodes can also be modified with Nb
based nanooxides for efficient and stable
photoelectrochemical water splitting [134-
136]. Recently, TiO2/CdS/Co—Pi heterojunction
exhibited a photocurrent of approximately 1
mA-cm 2 at 1.23 in relatively RHE and showed
reasonable stability during 2 h of irradiation, due
to photoelectron injection into TiO2 from CdS
and hole transfer to Co—Pi for water oxidation,
which mitigated the photocorrosion process to
some extent [137]. However, much more work
needs to be done to improve the performance and
stability of CdS-based photoelectrodes.

Along with CdS used as a photoanode,
CdTe was also demonstrated to be protected by a
140 nm-thick amorphous TiO: layer (deposited
by atomic layer deposition [ALD]), together with
a thin top layer of the oxygen evolution
electrocatalyst NiO, which exhibited stable
photocurrents for four days [138-145]. Among
cadmium chalcogenides, CdSe is also a valuable
material for  photoelectrochemical — water
decomposition due to its ability to absorb visible
light and control the hydrogen evolution reaction.
However, its performance can be further
improved by combining it in combination with
other materials to form heterostructures that
improve charge separation, charge transport, and
photostability, ultimately leading to higher solar-
to-hydrogen conversion efficiency [146-153].

The photocathode is one of the main
elements of electron-optical converters [154]. Its
function is to emit electrons into a vacuum under
the influence of optical radiation, thereby
converting an optical image into an electronic
one. Its primary parameter is sensitivity, which is
determined by the ratio of the photocurrent to the
luminous flux that generated it. The
photocathode responds to both the intensity and
frequency of the luminous flux, so its sensitivity
is categorized into integral and spectral [154].

Cuz0 has a direct band gap of about 2 eV, and
its conduction band position (approximately -1.1 eV
compared to NHE) is suitable for the release of

hydrogen from water under the influence of light.
[11]. The attractiveness of using Cu20 lies in its
abundance, scalability, low toxicity, and high
theoretical photocurrent of about 15 mA cm?, as
well as a potential solar-to-hydrogen conversion
efficiency of 18% wunder 1.5G AM light
illumination [155]. However, one of the main
drawbacks of Cu20 is its relatively moderate
photocurrent due to the rapid recombination of
electrons and holes. An even more serious
drawback is its very poor stability, since the
redox potentials for the reduction and oxidation
of copper oxide lie within the band gap [156,
157]. Several strategies have been used to
address these issues, such as: (1) combination
with a more positive conduction band n-type
semiconductor forms a p-n junction that
promotes the rapid transfer of photoelectrons
from Cu20 to the n-type semiconductor,
improving not only efficiency but also stability;
(2) application of a thin protective layer
consisting of, for example, carbon or metal oxide
[158-162]. For a stable Cu20-based
photoelectrochemical electrode, the p—n junction
must be continuous and uniform, the protective
layer must be conformal and free of pinholes, and
the cocatalyst must be strongly and uniformly
deposited on the electrode surface [163-164].

Currently, binary and ternary chalcogenide
materials are also used as photoelectrodes.

To function effectively, semiconductor
photocatalysts require an adequate band gap
energy. The band gap, which is defined as the
energy difference between a material's valence
and conduction bands, plays a crucial role in
determining its photocatalytic activity [165].
Although the ideal band gap for efficient H:
extraction is typically between 1.0 and 2.0 eV,
some materials with band gaps greater than 2.0
eV can still perform exceptionally well. This is
due to factors such as favorable environmental
conditions, enhanced charge separation
capabilities, synergistic effects in composite
systems, intrinsic catalytic activity, and energy
level tuning through doping or surface
modification. These materials are able to
promote water splitting despite their larger band
gaps, highlighting the complex interplay between
electrical and catalytic properties in Ho>
production. For optimal efficiency, a band gap of
about 2 eV is ideal. This energy range allows for
the absorption of visible light photons, which
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make up a significant portion of the solar
spectrum. As a result, it facilitates the excitation
of electrons from the valence band to the
conduction band under the influence of light
[165]. The crystallinity and morphology of
photocatalysts influence the rate of H:
production. A larger surface area results in a
greater number of reactive sites, which generates
more Hz [165]. One of the advantages of
nanoscale  photocatalysts is that their
photoinduced charge carriers can more quickly
reach photocatalytic surface reaction sites,
reducing the rate of recombination. The
morphology and structure of photocatalysts
depend significantly on the synthesis methods
used; changes in temperature, surfactant
concentration, and pH can directly affect the size,
shape, and structure of the crystals. A review of
the literature suggests that most photocatalytic
reactions occur on the surface of a photocatalyst.
Exposure to specific crystal surfaces, known as
the surface effect, can significantly enhance
photocatalyst activity. Consequently, the
synthesis of photocatalysts with precise
morphology and structure has become a key area
of research in photocatalysis [166-187].

A study of the effect of temperature
revealed that reaction temperature has no
thermodynamic impact on photocatalytic
activity, as it does not promote the creation of
charge carriers. However, increasing the system's
operating temperature can enhance product
desorption from the photocatalyst surface, which
increases photocatalytic activity and improves
the reaction rate. The effect of temperature on
photocatalytic activity depends on the behavior
of the catalyst, which changes when the catalyst
is replaced. Lowering the temperature results in
low Ha2 formation due to slow desorption of the
product compared to adsorption of the reactant
on the catalytic surface. The high operating
temperatures of the system enhance the transfer
of charge carriers from valence bands to higher
energy states, making the photocatalytic process
more  efficient against charge carrier
recombination and producing more H> [188].

The effect of pH on water decomposition
varies depending on the chemical system being
studied. In  water  splitting  systems,
photocatalysts typically operate at a normal pH
of 6.7-6.9. The stoichiometric decomposition of
pure water balances the concentrations of H" and

OH created, so there is no noticeable difference
in the pH of the water before and after the
reaction [165].

Metal chalcogenides are known to have
better photocatalytic activity compared to oxides
[189-192]. However, the main drawback of metal
chalcogenides is their poor compositional
stability, where they often wundergo a
photocorrosion process, which destroys the
chalcogenides, thereby ultimately reducing the
overall photocatalytic efficiency as well as the
stability of the catalysts. Compositional
instability is essentially an intrinsic characteristic
of metal chalcogenides that must be overcome to
exploit their inherent potential properties for any
given application.

Metal sulfides are considered promising
semiconductors due to their efficient light
sensitivity. Their valence band, typically formed
by sulfur 3p orbitals, exhibits a narrower and
more negative range compared to metal oxides,
offering unique advantages for photocatalytic
applications [194, 195]. Metal sulfides have
attracted considerable attention as semiconductor
photocatalysts for hydrogen production due to
their high photocatalytic activity, abundant
active sites, and favorable band structures. Their
narrow band gaps allow them to absorb a
significant portion of the light spectrum, making
them highly efficient for solar power applications
[196].

The elements that contribute to the creation
of photocatalysts based on metal sulfides are
shown in Fig. 3(a) [165, 191]. Fig. 3(b) provides
further illustrations of the band structures of
several metal sulfides [165, 193]. For
photocatalytic production of Hz, various metal
sulfides are used as photocatalysts, such as SnS»
[197-198, 166], CdS [168-169, 199], MoS:2 [169-
172, 200], NiS2[173-175, 201], WS2[176-
178], PbS [179], In2S3[180], CuS [181], ZnS
[182-187], FeS [202, 203], etc.

Molybdenum disulfide (MoS:) is a
common transition metal dichalcogenide (TMD)
known for its unique electronic and optical
properties, making it highly efficient in
generating hydrogen via photoelectrocatalysis
[169-172, 200, 204]. However, pure MoS: is
often limited in its photoelectrocatalytic
performance due to its poor conductivity and
limited light absorption capacity [205]. To
address these limitations and increase hydrogen
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production, the researchers explored a
heteroatom doping strategy, which involves
introducing different atoms into the catalyst to

modulate its conductivity and electronic structure
[206].
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Fig. 3. Image of elements used in the formation of photocatalysts based on metal sulfides (a) and the
band gap width of numerous metal sulfides (b) [165, 193].

Multicomponent metal chalcogenides
possess desirable characteristics such as narrow
band gaps, stability, low toxicity, high
photoconductivity, and strong sensitivity to
visible  light [207]. Initially,  these
multicomponent metal chalcogenides were
mainly used in applications such as photovoltaic
and photochemical devices, solar cells, LEDs,
and nonlinear optical materials. However, due to
their exceptional properties, multicomponent
chalcogenides have great potential as visible
light-sensitive photocatalysts [181, 195, 208-
209].

Despite their advantages, metal sulfides
face challenges as photocatalysts, such as high
recombination rates of photogenerated carriers
and susceptibility to photocorrosion To address
these issues, loading cocatalysts onto metal
sulfides is an effective strategy. Cocatalysts help
suppress the recombination of photogenerated
carriers, enhance the photocatalytic activity of
composite materials, and reduce the activation

energy of the reaction, thereby improving the
overall performance [165].

Selenium-based  chalcogenides  are
semiconductors that exhibit high light absorption
coefficients, exceeding 10* cm™ in the visible
spectrum. Their band gap typically ranges from
1.8 t0 2.0 eV [210]. Metal selenides offer several
advantages as catalysts compared to metal
sulfides, such as increased stability, lower cost,
and improved photocatalytic performance. This
increase in efficiency can be explained by the
close energy levels of the 3d orbital of selenium
with the 3s and 3p orbitals, which results in a
stronger bond between the metal and selenium
atoms. This bond strength may contribute to the
higher stability and better catalytic properties of
metal selenides compared to their sulfide
counterparts [165].  When selenium s
incorporated into metal catalysts, they acquire
metallic properties that facilitate electron transfer
and increase the likelihood of reaction pathways
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resembling those observed in metal sulfide
catalysts.

In recent years, the following compounds can be
classified as selenide cocatalysts: Ni-Se [211-
214], Co-Se [215-216], Zn-Se [184, 217-220],
Sb-Se [217-225], Mo-Se [226-229], W-Se [230-
231], Ag-Se [232], Fe-Se [233] and In-Se [234].
The lower Se-Hads binding energy (273 kJ/mol ™),
which is closer to the Pt-Hads binding energy
(251 kJ/mol"),  makes  selenium-based
cocatalysts an attractive alternative to amorphous
and sulfur-rich cocatalysts for
photoelectrochemical  hydrogen  production
[235, 236].

Based on recent theoretical calculations, it
has been found that the energy required to adsorb
hydrogen on nickel selenide sites is similar to
that required to adsorb hydrogen on platinum (Pt)
sites, which are widely recognized as the most
efficient cocatalysts for hydrogen evolution. This
discovery suggests that nickel selenide could
potentially replace platinum as a less expensive
alternative for this reaction [237, 238].
Researchers have studied the use of nickel
selenide-based cocatalysts such as NiSei+x,
NiSe2, and NiSex for efficient photocatalytic
hydrogen evolution reaction. Also, in [239],
promising results were shown using amorphous
NiSei+x nanodots as a cocatalyst for TiO2
photocatalysts.

While MoSe2 has been identified as a
potential cocatalyst for the photoelectrochemical
hydrogen evolution reaction due to its lower
Gibbs free energy compared to MoSz, there are
limited studies investigating its role in this
context [240, 241]. MoSe2 can assume two
distinct phases: a metastable metallic phase 1T
and a more stable semiconducting phase 2H,
depending on the arrangement of the Se atoms.
The semiconducting phase 2H of MoSe: exhibits
intrinsic photocatalytic activity. However, recent
studies indicate that the metallic phase of 1T
MoSe: may have superior performance for
photoelectrochemical hydrogen evolution. This
is due to the greater accessibility of the reactive
sites of the metallic phase 1T on both the basal
and edge planes, as well as its superior metallic
electron conductivity, potentially leading to
improved photoelectrocatalytic performance in
the hydrogen evolution reaction [196, 242-243].

Metal selenides are promising
photocatalytic  cocatalysts for  hydrogen

production due to their unique properties. They
offer advantages such as stability, cost-
effectiveness, and improved performance
compared to metal sulfides. Nickel selenide, in
particular, has potential as a lower-cost
alternative to platinum. Amorphous and
selenium-enriched  cocatalysts have also
demonstrated significant improvements in
photocatalytic  activity. Combining metal
selenides with other semiconductors improves
charge transport. However, further research is
needed to optimize selenide-enriched cocatalysts
and develop reliable synthesis methods. Progress
in this area will facilitate the development of
efficient and stable photocatalysts for hydrogen
production [196].

Tellurium-based chalcogenides are less
studied than their S- and Se-based counterparts,
mainly due to their higher cost and lower stability
[244]. However, the bond strength of Te-H atoms
(238 kJ-mol!) is similar to that of Pt-H atoms
(251 kJ-mol"), which makes them a potential
alternative to Pt as a cocatalyst for
photoelectrochemical hydrogen evolution, since
the bond strength of Te-H atoms is comparable
to that of Pt-H, which is commonly used as a
cocatalyst due to its high bond strength. The bond
strength of Se-H atoms (273 kJ-mol™') and S-H
atoms (363 kJ-mol) is higher than that of Te-H
atoms, but lower than that of Pt-H atoms
[245]. Transition metal tellurides such as MnTex
[246-247], MoTe2 [248-252], NiTex [253-256],
ZnTe [257-258], CdTex [259-261], Bi2Tes [262-
263], and Coi67Te2 [261] have attracted
considerable attention due to their exceptional
optical properties, high proton adsorption
capacity, and high electrical conductivity. These
materials are widely used in various applications,
including solar cells, optoelectronic devices, and
photoelectrocatalysts for splitting water to
produce hydrogen [265, 266]. Their distinctive
properties make them ideal for a variety of
applications. These materials exhibit direct band
gaps, high transparency, and high absorption
coefficients. =~ Furthermore, according to
theoretical studies, the unique p-m electron
distribution of these catalysts creates electrically
sensitive Te active sites, which are highly
efficient in activating water molecules. This
property is a result of the special concentration of
p—= electrons of the active centers of Te exposed
to metal telluride [267, 268].
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Among metal tellurides, ZnTe is a
semiconductor material with a small band gap of
about 2.23-2.30 eV, which allows it to absorb
visible light over a wide range [269]. Thanks to
this property, it is capable of forming p-n
heterostructures with other semiconductor
materials. Moreover, the narrow band gap of
ZnTe facilitates efficient separation of
photogenerated electrons and holes, making it a
highly promising material for various
photocatalytic applications. Efficient interfacial
electron transfer between semiconductors is
facilitated by  ZnTe among  p-type
semiconductors, making it a key driving force for
photocatalytic activity. Research has already
demonstrated the potential of ZnTe as a
photocatalytic material, and its broad visible light
absorption spectrum makes it a promising
candidate for future applications in this field
[270].

In general, metal tellurides show promise
as catalysts and cocatalysts for photocatalytic
hydrogen evolution. They have bond strength
comparable to platinum, as well as favorable
optical properties and high conductivity. Recent
research has focused on enhancing the
performance of transition metal chalcogenides
through techniques such as heterojunction design
and modification [196]. The incorporation of
transition metal chalcogenides into other
semiconductors improves charge transport and
enhances photocatalytic  activity.  Further
research is aimed at optimizing the synthesis
methods, studying different compositions of
transition metal chalcogenides, and investigating
their long-term stability and performance. Metal
tellurides can make a significant contribution to
the development of efficient and environmentally
friendly methods for producing hydrogen [196].

Phosphides, another class of two-
dimensional layered materials, are among the
promising candidates due to their unique
properties and potential applications in various
fields. Like transition metal chalcogenides,
phosphides consist of transition metal atoms
covalently bonded to phosphorus atoms, with
individual layers held together by van der Waals
forces. Phosphides exhibit unique properties,
including high electron mobility, a tunable band
gap, and strong light absorption in the visible
spectrum, making them promising candidates for
optoelectronic and photovoltaic devices [196,

271]. Furthermore, phosphides have shown
potential for catalytic applications due to their
large surface area and unique electronic structure
[272]. The use of noble metal-based catalysts in
photocatalytic hydrogen production is limited by
their rarity and high cost, necessitating the
development of alternative, more accessible, and
more efficient options. As a result, there is a
growing demand for the development of
photocatalysts ~ without  precious metals.
Recently, transition metal phosphides, which are
abundant on Earth, have been considered as
promising candidates for HER due to their low
cost and high efficiency. This development is
particularly important given the growing demand
for sustainable and cost-effective methods of
hydrogen production [273-276].

Photoelectrocatalytic hydrogen production
often involves the use of transition metal
phosphides such as FePx, CoPx, and NiPx as
cocatalysts [195, 277]. In addition, CuPx, MoPx,
WPy, and bimetallic phosphides were also found
to be effective cocatalysts in this process [195,
278].

The use of iron phosphides as catalysts in
photoelectrocatalytic hydrogen production is
gaining popularity due to their high availability,
cost-effectiveness, and the presence of active
iron-containing clusters, which are also found in
catalysts for biohydrogen evolution.
Considerable research has been conducted on
iron phosphides, and they have been used in
widespread application as cocatalysts in
photoelectrocatalytic ~ hydrogen  production
systems [279-281]. These studies showed that the
use of FeP and Fe:P cocatalysts can greatly
enhance the efficiency of photoelectrocatalytic
hydrogen production. However, most of these
studies used FeP or Fe2P nanoparticles, which are
prone to aggregation, reducing the number of
available active sites. To further improve the
performance of photoelectrocatalytic hydrogen
production, further research is needed to develop
various nanostructured iron phosphides, such as
0D and 2D ultrafine nanoparticles with higher
active site density [195].

The excellent -catalytic properties of
various cobalt phosphides for H2 production via
photocatalysis have attracted considerable
attention. Although remarkable progress has
been made in improving photoexcited charge
separation and photocatalytic activity, a
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complete understanding of the interface
interactions and chemical bonds between cobalt
phosphide-based cocatalysts and semiconductor
photocatalysts is still lacking. Although some
studies have explored the correlation between
chemical bonds and photocatalytic efficiency,
research in this area has been limited to a few
recent investigations. These studies highlight the
potential of cobalt phosphides as promising
cocatalysts for photoelectrocatalytic hydrogen
production, primarily due to their tunable
nanostructure. However, in many cases, the
incorporation ~ of  nanostructured  cobalt
phosphides into semiconductors is achieved by
the post-loading method, which often leads to
weakening of the interfacial contact between the
cobalt phosphides and the semiconductors. In
this regard, it is extremely important for future
research to prioritize the development of
methods that ensure strong and tight interaction
of nanostructured cobalt phosphides with
semiconductors, which will reduce the Schottky
barrier [195]. NiP and Ni2Ps have become key
materials in the nickel phosphide family, serving
as efficient cocatalysts for photoelectrocatalytic
hydrogen production. Their exceptional stability
and activity make them particularly attractive for
such applications. Researchers have developed
innovative nanostructures to enhance the
interaction between the Ni:P cocatalyst and
semiconductor photocatalysts, thereby
accelerating the movement of photoexcited
charges. This strategy has the potential to
improve the efficiency of photocatalytic
reactions by promoting the separation and
transfer of electrons and holes generated by light
absorption [282-283]. In addition, to meet the
demands of practical applications, NizP has been
integrated into various complex
photoelectrocatalytic ~ hydrogen  production
systems. Despite seawater accounting for 97% of
the Earth's water resources, achieving efficient
photoelectrocatalytic hydrogen production from
seawater remains challenging due to the presence

of various cations and microorganisms.

To address this issue, the authors
developed a photocatalytic system by loading
carbon-encapsulated Ni2P onto a fully
delocalized organic polymer (COP-TF@CNi2P),
resulting in efficient and stable H2 production via
seawater decomposition [284]. Although the
photocatalytic activity of nickel phosphides for
photoelectrocatalytic hydrogen production has
been extensively studied, most studies have
focused primarily on the Ni.P phase, ignoring
other phases. Furthermore, the nickel-to-
phosphorus ratio in these materials significantly
influences their efficiency in photocatalytic
hydrogen production. Therefore, further research
is needed to explore the relationship between
different nickel phosphide phases and their
performance in  photocatalytic  hydrogen
production. Such studies will be crucial for the
advancement of this field [195].

The researchers also identified CusP as a
promising p-type cocatalyst for highly efficient
photoelectrocatalytic hydrogen production. This
discovery is particularly important because of the
abundant availability of copper, an element
widely distributed on Earth [285]. The authors
fabricated a p—n junction by loading CusP onto
CdS nanorods [286]. The purpose of this
arrangement was to improve charge transfer and
increase the efficiency of photoelectrocatalytic

hydrogen  production. Scientists ~ have
successfully  optimized  the CusP/CdS
configuration, resulting in an impressive

photocatalytic hydrogen production rate of
approximately 200 pmol-h™'-mg™" under visible-
light irradiation [286].

Molybdenum phosphides (MoP) and
tungsten phosphides (WP) have been identified
as promising cocatalysts for efficient
photoelectrocatalytic hydrogen production due to
their abundance in the Earth's crust. Several
studies have established the potential of these
compounds for efficient hydrogen evolution [35,
287, 288].

Conclusion
The development of efficient high-performance photocatalysts that aim to
photocatalysts with high photoconversion enhance photoconversion efficiency and presents

efficiency is the ultimate goal of photocatalytic
hydrogen production. The review summarizes
some typical approaches to the development of

fundamental aspects of scientific problems of
solar-driven water splitting. Essentially, to
achieve self-splitting water decomposition using
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a single semiconductor, the band gap must cover
the reduction and oxidation potentials of water so
that photoexcited electrons and holes possess
enough energy for hydrogen and oxygen
evolution reactions, respectively. Wide bandgap
semiconductors, such as TiOz, are inexpensive
and stable, but they are inefficient at harvesting
sunlight due to their limited absorption in the
visible spectrum. Although a-Fe203 and BiVO4
have broader absorption than TiO2, the
photocurrents achieved for these materials do not
achieve theoretical maximums. The main
limiting factors are rapid carrier recombination
and poor surface oxygen evolution reaction
kinetics. Narrow-gap semiconductors such as
CdS and ITI-V compounds have the potential to
achieve high efficiency but suffer from
instability over extended periods. The unique
electronic and structural properties of transition
metal chalcogenides and phosphides enable
efficient separation and transport of electrons and
holes, leading to increased generation rates of
hydrogen. Furthermore, the band gap of these
materials can be tuned by changing their
composition or structure, which provides
flexibility in optimizing their photocatalytic
performance for specific applications. In
addition, the use of these materials as cocatalysts
further enhances their effectiveness in hydrogen
release. Although transition metal chalcogenides
and phosphides have demonstrated promising
performance as photocatalysts for hydrogen
evolution, several limitations and challenges
remain to be addressed. One of the major
problems is the low conductivity and limited
ability of some photocatalysts to absorb light,
which can significantly affect their efficiency. To
address this issue, future research should focus
on developing photocatalysts with enhanced

electronic properties, such as higher electron
mobility and better light absorption ability.

Furthermore, the environmental
friendliness and feasibility of large-scale
production of these photocatalysts must be
considered. Some synthesis methods reported in
previous studies are complex and costly, which
may limit their practical application. Therefore,
future research should focus on developing
efficient and stable photocatalysts using
synthesis methods that are both easily scalable
and environmentally friendly.

However, despite significant
advancements in developing photocatalysts with
high conversion efficiency, several unresolved
challenges still exist. For example, most
heterojunctions based on metal chalcogenides are
capable of splitting water only in the presence of
agents. Therefore, it is crucial to develop new
metal chalcogenide-based heterojunctions that
can split water directly, without agents. There are
two solutions: (1) combining two
semiconductors in a heterojunction for both
hydrogen and oxygen production; (2) developing
and producing new metal chalcogenides with
more suitable band gaps and potential band
positions.  Another problem for metal
chalcogenides is that photocatalytically active
sites for Hz are rarely investigated. However,
catalytic centers are very important for us to
continue research on catalyst modification and
efficiency improvement.

The ultimate goal of all solar fuel research
is to develop and produce cost-effective, highly
efficient, and stable photoanodes and/or
photocathodes for the production of oxygen
and/or hydrogen using either particle-based
systems or photoelectrochemical devices.
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